2019, 39(4):479-488. doi: 10.16078/j.tribology.2018196

D2车轮钢原始组织对滑动磨损性能的影响

1.?

大连交通大学 材料科学与工程学院,辽宁 大连 116028

2.?

大连交通大学 辽宁省轨道交通关键材料重点实验室,辽宁 大连 116028

通讯作者: 任瑞铭, rmren@djtu.edu.cn

收稿日期: 2018-12-19
录用日期: 2019-03-05
网络出版日期: 2019-07-28

Influences of Microstructure on Sliding Wear Performance of D2 Wheel Steel

1.?

Dalian JiaoTong University, School of Material Science and Engineering, Liaoning Dalian 116028, China

2.?

Dalian JiaoTong University, Key Laboratory of Key Material of Rail Transit in Liaoning Province, Liaoning Dalian 116028, China

Corresponding author: Ruiming REN, rmren@djtu.edu.cn

Received Date: 19 Dec 2018
Accepted Date: 05 Mar 2019
Available Online: 28 Jul 2019

引用本文: 辛悦, 赵秀娟, 潘金芝, 潘睿, 任瑞铭. D2车轮钢原始组织对滑动磨损性能的影响[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018196.

Citation: Yue XIN, Xiujuan ZHAO, Jinzhi PAN, Rui PAN and Ruiming REN. Influences of Microstructure on Sliding Wear Performance of D2 Wheel Steel[J]. TRIBOLOGY.

采用MRH-5A型环块磨损试验机对D2车轮钢及U71Mn钢轨钢采取对摩方式进行滑动磨损试验,研究原始组织对D2车轮钢滑动磨损性能的影响. 结果表明:以回火索氏体(TS)为原始组织的D2车轮钢比片状珠光体组织(P)+先共析铁素体(F)的D2车轮钢具有更好的耐磨性能. P+F和TS表面磨损机制均以磨粒磨损和黏着磨损为主,而P+F表面磨损更严重且伴随大块白层剥落现象. TS塑性变形层更薄,其内的铁素体细化成纳米晶,粒状渗碳体不发生剪切变形,主要以溶解为主,不易形成较厚的白层,不发生大块剥落现象,提高耐磨性能.

关键词: D2车轮钢, 回火索氏体, 滑动摩擦, 磨损性能, 组织演变
[1]

肖乾, 穆明, 周新建, 等. 高速列车轮轨材料滑动摩擦实验研究[J]. 华东交通大学学报, 2013, 30(5): 24–29.

Xiao Qian, Mu Ming, Zhou Xinjian, et al. Experimental study on sliding friction of wheel and rail materials in high-speed trains[J]. Journal of East China Jiaotong University, 2013, 30(5): 24–29.

[2]

Irfan M A, Prakash V. Time resolved friction during dry sliding of metal on metal[J]. International Journal of Solids & Structures, 2000, 37(20): 2859–2882.

[3]

Severin D, S D?rsch. Friction mechanism in industrial brakes[J]. Wear, 2001, 249(9): 771–779. doi: 10.1016/S0043-1648(01)00806-7

[4]

Reyes M, Neville A. Degradation mechanisms of Co-based alloy and WC metal-matrix composites for drilling tools offshore[J]. Wear, 2003, 255(7): 1143–1156.

[5]

张永振, 贾利晓. 材料干滑动摩擦磨损性能的研究进展[J]. 润滑与密封, 2010, 35(9): 1–7.

Zhang Yongzhen, Jia Lixiao. Research progress on dry sliding friction and wear properties of materials[J]. Lubrication and Sealing, 2010, 35(9): 1–7.

[6]

Sopok S, Rickard C, Dunn S. Thermal–chemical-mechanical gun bore erosion of an advanced artillery system part one: theories and mechanisms[J]. Wear, 2005, 258(1-4): 659–670. doi: 10.1016/j.wear.2004.09.031

[7]

Lawton B. Thermo-chemical erosion in gun barrels[J]. Wear, 2001, 251(1): 827–838.

[8]

Douglas R M, Steel J A, Reuben R L. A study of the tribological behaviour of piston ring/cylinder liner interaction in diesel engines using acoustic emission[J]. Tribology International, 2006, 39(12): 1634–1642. doi: 10.1016/j.triboint.2006.01.005

[9]

Kubo S, Kato K. Effect of arc discharge on the wear rate and wear mode transition of a copper-impregnated metallized carbon contact strip sliding against a copper disk[J]. Tribology International, 1999, 32(7): 367–378. doi: 10.1016/S0301-679X(99)00062-6

[10]

徐雪波, 鲍明东, 于磊, 等. 封闭磁场非平衡磁控溅射偏压对CrN镀层摩擦学性能影响[J]. 真空科学与技术学报, 2009, 29(5): 565–569.

Xu Xuebo, Bao Mingdong, Yu Lei, et al. Effect of closed magnetic field non-equilibrium magnetron sputtering bias on tribological properties of CrN coatings[J]. Journal of Vacuum Science and Technology, 2009, 29(5): 565–569.

[11]

刘高远, 王斌, 李运菊. 马氏体不锈钢不同剩余磁场条件下短时干摩擦的摩擦损伤行为研究[J]. 失效分析与预防, 2007, 2(2): 20–23. doi: 10.3969/j.issn.1673-6214.2007.02.004

Liu Gaoyuan, Wang Bin, Li Yunju. Study on friction damage behavior of short-term dry friction of martensitic stainless steel under different residual magnetic field conditions[J]. Failure analysis and prevention, 2007, 2(2): 20–23. doi: 10.3969/j.issn.1673-6214.2007.02.004

[12]

王观民, 张永振, 杜三明, 等. 不同气氛环境中钢/铜摩擦副的高速干滑动摩擦磨损特性研究[J]. 摩擦学学报, 2007, 27(4): 346–351. doi: 10.3321/j.issn:1004-0595.2007.04.010

Wang Guanmin, Zhang Yongzhen, Du Sanming, et al. Research on high-speed dry-sliding friction and wear characteristics of steel/copper friction pairs in different atmosphere environments[J]. Journal of Tribology, 2007, 27(4): 346–351. doi: 10.3321/j.issn:1004-0595.2007.04.010

[13]

Das D, Dutta A K, Ray K K. Correlation of microstructure with wear behaviour of deep cryogenically treated AISI D2 steel[J]. Wear, 2009, 267(9): 1371–1380.

[14]

周路海, 韦习成, 王春燕, 等. T10钢的干滑动摩擦学行为与晶粒尺寸的关系[J]. 材料研究学报, 2017, 31(11): 833–838.

Zhou Luhai, Wei Xicheng, Wang Chunyan, et al. Relation between dry sliding tribological behavior and grain size of T10 steel[J]. Journal of Materials Research, 2017, 31(11): 833–838.

[15]

高彩桥, 张泽国. 45钢中渗碳体形态对耐磨性的影响[J]. 润滑与密封, 1984(5): 29–32.

Gao Caiqiao, Zhang Zeguo. Influence of cementite morphology on wear resistance of 45 steel[J]. Lubrication and Sealing, 1984(5): 29–32.

[16]

贾素秋, 王长生, 于淑敏. 基体组织和表面形态对碳钢磨损性能的影响[J]. 科技创新导报, 2008, (17): 21–22.

Jia Suqiu, Wang Changsheng, Yu Shumin. Effect of matrix structure and surface morphology on wear performance of carbon steel[J]. Science and Technology Innovation Guide, 2008, (17): 21–22.

[17]

Kalousek J, Fegredo D M, Laufer E E. The wear resistance and worn metallography of pearlite, bainite and tempered martensite rail steel microstructures of high hardness[J]. Wear, 1985, 105(3): 199–222. doi: 10.1016/0043-1648(85)90068-7

[18]

王少杰, 韩靖, 曾伟, 等. 低温对ER8车轮钢力学性能的影响[J]. 材料研究学报, 2018, 32(6): 401–408.

Wang Shaojie, Han Jing, Zeng Wei, et al. Influence of low temperature on mechanical properties of ER8 wheel steel[J]. Journal of Materials Research, 2018, 32(6): 401–408.

[19]

崔银会, 张建平, 苏航, 等. 高速列车车轮材料研究的综述[J]. 安徽冶金科技职业学院学报, 2005, 15(2): 9–12.

Cui Yinhui, Zhang Jianping, Su Hang, et al. Review of research on wheel materials of high-speed trains[J]. Journal of Anhui Vocational College of Metallurgy and Technology, 2005, 15(2): 9–12.

[20]

潘睿, 陈春焕, 任瑞铭. 一种白层组织的扫描电镜样品制备方法[P]. 辽宁: CN105242075A,A-01-13, 2016.

Pan Rui, Chen Chunhuan, Ren Ruiming. A method of preparing SEM specimen including white etching layer[P]. Liaoning:CN 105242075, A-01-13, 2016(in Chinese).

[21]

陶贵闯, 赵秀娟, 潘金芝, 等. D2高速车轮钢在滑动磨损下的白层形成与剥落[J]. 摩擦学学报, 2018, 38(4): 437–444. doi: 10.16078/j.tribology.2018.04.008

Tao Guichuang, Zhao Xiujuan, Pan Jinzhi, et al. Formation and peeling of white layer of D2 high-speed wheel steel under sliding wear[J]. Tribology, 2018, 38(4): 437–444. doi: 10.16078/j.tribology.2018.04.008

[22]

Griffiths B J. Mechanisms of white layer generation with reference to machining and deformation processes[J]. Journal of Tribology, 1987, 109(3): 525–530. doi: 10.1115/1.3261495

[23]

胡显军, 谢骏, 周立初, 等. 渗碳体形态对珠光体钢丝拉拔形变的影响[J]. 钢铁研究学报, 2018, 30(2): 120–126.

Hu Xianjun, Xie Jun, Zhou Lichu, et al. Influence of cementite morphology on drawing deformation of pearlite steel wire[J]. Journal of Iron and Steel Research, 2018, 30(2): 120–126.

[24]

Ivanisenko Y, Lojkowski W, Valiev R Z, et al. The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion[J]. Acta Materialia, 2003, 51(18): 5555–5570. doi: 10.1016/S1359-6454(03)00419-1

[25]

Zhang H W, Ohsaki S, Mitao S, et al. Microstructural investigation of white etching layer on pearlite steel rail[J]. Materials Science & Engineering A, 2006, 421(1): 191–199.

[26]

Porter D A, Easterling K E, Smith G D W. Dynamic studies of the tensile deformation and fracture of pearlite[J]. Acta Metallurgica, 1978, 26(9): 1405–1422. doi: 10.1016/0001-6160(78)90156-6

[27]

李凯丽. 钢中渗碳体和铁素体协调变形机制及其位向关系的研究[D]. 秦皇岛: 燕山大学, 2016.

Li Kaili. Research on the coordination deformation mechanism of cementite and ferrite in steel and their orientation relationship[D]. Qinhuangdao: Yanshan University, 2016 (in Chinese).

[28]

杨兴宽, 刘颖鑫, 武小鹏, 等. 机车车轮复合超声滚压表面强化工艺研究[J]. 铁道技术监督, 2018, 46(8): 36–39.

Yang Xingkuan, Liu Yingxin, Wu Xiaopeng, et al. Research on composite ultrasonic rolling surface strengthening technology of locomotive wheels[J]. Railway Technical Supervision, 2018, 46(8): 36–39.

[29]

闵娜. 共析钢室温大变形和时效过程相变研究[D]. 上海: 上海交通大学, 2007.

Min Na. Study on large deformation and aging process of eutectoid steel at room temperature[D]. Shanghai: Shanghai Jiaotong University, 2007 (in Chinese).

[30]

Gavriljuk V G. Decomposition of cementite in pearlitic steel due to plastic deformation[J]. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 2003, 345(1-2): 81–89.

[31]

李智, 杨志卿, 马秀良. 形变导致渗碳体(Fe3C)分解的电子显微学研究[J]. 电子显微学报, 2010, 29(3): 268–275.

Li Zhi, Yang Zhiqing, Ma Xiuliang. Electron microscopy of carburized bodies (Fe3C) induced by deformation[J]. Acta Electronica Microscopy, 2010, 29(3): 268–275.

[32]

许云华, 袁善良, 罗勤业, 等. 退火45钢高能冲击载荷下的白层形态及形成机制[J]. 热加工工艺, 2000, (1): 3–4.

Xu Yunhua, Yuan Shanliang, Luo Qinye, et al. Morphology and formation mechanism of white layer under high-energy impact load of annealed 45 steel[J]. Hot Processing Technology, 2000, (1): 3–4.

[33]

Gangopadhyay A K. Effect of impact on the grinding media and mill liner in a large semiautogenous mill[J]. Wear, 1987, 114(2): 249–260. doi: 10.1016/0043-1648(87)90091-3

[34]

王钧石, 金祖卿, 马松华. 材料的表面滑动磨损剥离特征[J]. 机械工程材料, 1988, (4): 13–15.

Wang Junshi, Jin Zuqing, Ma Songhua. Surface sliding wear and tear characteristics of materials[J]. Mechanical Engineering Materials, 1988, (4): 13–15.

[35]

查小琴, 惠卫军, 雍岐龙. 铁素体-珠光体型非调质钢的高周疲劳破坏行为[J]. 材料研究学报, 2008, 22(6): 634–638. doi: 10.3321/j.issn:1005-3093.2008.06.015

Zha Xiaoqin, Hui Weijun, Yong Qilong. High-cycle fatigue failure behavior of ferrite-pearlite type non-quenched and tempered steel[J]. Journal of Materials Research, 2008, 22(6): 634–638. doi: 10.3321/j.issn:1005-3093.2008.06.015

[36]

段桂花, 张平, 李金许, 等. 铁素体和珠光体含量影响变形过程的原位研究[J]. 北京科技大学学报, 2014, 36(8): 1032–1038.

Duan Guihua, Zhang Ping, Li Jinxu, et al. In-situ study of influence of ferrite and pearlite content on deformation process[J]. Journal of Engineering Science, 2014, 36(8): 1032–1038.

[37]

杨业元, 方鸿生, 黄维刚, 等. 白层形态及形成机制[J]. 金属学报, 1996, (4): 373–376.

Yang Yeyuan, Fang Hongsheng, Huang Weigang, et al. Morphology and formation mechanism of white layer[J]. Acta Metallica Sinica, 1996, (4): 373–376.

[38]

Yang Y Y, Fang H S, Huang W G. A study on wear resistance of the white layer[J]. Tribology International, 1996, 29(29): 425–428.

[1]

. 不同温度下Cu/FeS复合材料摩擦过程中组织演变的分子动力学模拟研究[J]. 摩擦学学报, 2009, 29(1):-488.

[2]

张秋阳, 丁红燕, 周广宏, 张临财, 陈秋明, 秦珂, 戴玉娇. 含Fe2O3摩擦层的促进形成对H13和45钢磨损性能的影响[J]. 摩擦学学报, 2017, 37(6):-488. doi: 10.16078/j.tribology.2017.06.014

[3]

. Mo基固溶体增韧Mo2Ni3Si金属硅化物合金高温滑动磨损性能[J]. 摩擦学学报, 2007, 27(5):-488.

[4]

. 高速切削强化表面(HSMS)的摩擦学性能试验研究[J]. 摩擦学学报, 2008, 28(6):-488.

[5]

. 20CrNiMo钢在冲击滑动耦合作用下的磨损特性研究[J]. 摩擦学学报, 2008, 28(3):-488.

[6]

王兰, 王树奇, 李新星, 周银, 张秋阳. TC4合金干滑动磨损性能的研究[J]. 摩擦学学报, 2015, 35(5):-488. doi: 10.16078/j.tribology.2015.05.016

[7]

. 氮离子注入Cr2O3涂层的磨损性能研究[J]. 摩擦学学报, 2006, 26(5):-488.

[8]

孔德军, 周朝政. TD处理制备碳化钒(VC)涂层的摩擦磨损性能[J]. 摩擦学学报, 2011, 31(4):-488.

[9]

王兰, 王树奇, 张秋阳. 摩擦层的形成对TC4合金磨损性能的影响[J]. 摩擦学学报, 2014, 34(6):-488.

[10]

. 石墨及氧化铝增强AZ91D-Cex基复合材料的磨损性能研究[J]. 摩擦学学报, 2008, 28(3):-488.

[11]

. N80钢CO2腐蚀产物膜在水/砂两相流介质中的磨损性能[J]. 摩擦学学报, 2005, 25(1):-488.

[12]

林冲, 吴树森, 吕书林, 吴和保. 干摩擦条件下超声流变压铸高铁过共晶Al-Si合金磨损性能研究[J]. 摩擦学学报, 2017, 37(2):-488. doi: 10.16078/j.tribology.2017.02.005

[13]

. Al-TiO2-B2O3反应体系中B2O3/TiO2摩尔比对热扩散反应合成铝基复合材料磨损性能的影响[J]. 摩擦学学报, 2005, 25(1):-488.

[14]

史志远, 朱真才. 复合工况条件下刮板输送机运料中板磨损行为研究[J]. 摩擦学学报, 2017, 37(4):-488. doi: 10.16078/j.tribology.2017.04.008

[15]

李广宇, 雷明凯. γN相/Si3N4陶瓷球摩擦副在干摩擦条件下的磨损机制转变图[J]. 摩擦学学报, 2016, 36(6):-488. doi: 10.16078/j.tribology.2016.06.006

[16]

. 载荷对Al2O3增强Y-TZP陶瓷磨损特性的影响[J]. 摩擦学学报, 2006, 26(1):-488.

[17]

. 自动取款机摩擦学系统在沙尘环境中的磨损特性研究[J]. 摩擦学学报, 2005, 25(5):-488.

[18]

. 考虑接触界面材料微观结构与势能参数的滑动摩擦计算研究[J]. 摩擦学学报, 2006, 26(2):-488.

[19]

刘刚, 杨丽, 刘斌, 王晓龙, 周峰. 口腔正畸摩擦研究进展[J]. 摩擦学学报, 2018, 38(2):-488. doi: 10.16078/j.tribology.2018.02.015

[20]

. 等离子熔敷Cr7C3金属陶瓷增强复合涂层组织与耐磨性研究[J]. 摩擦学学报, 2006, 26(3):-488.

  • 计量
    • PDF下载量 (4)
    • 文章访问量 (213)
    • HTML全文浏览量 (73)
    • 引证文献数? (0)
    目录

    Figures And Tables

    D2车轮钢原始组织对滑动磨损性能的影响

    辛悦, 赵秀娟, 潘金芝, 潘睿, 任瑞铭