2019, 39(4):463-469. doi: 10.16078/j.tribology.2018197

丁腈橡胶紫外线臭氧照射亲水改性及其水润滑性能研究

1.?

重庆大学 机械工程学院,重庆 400044

2.?

重庆大学 机械传动国家重点实验室,重庆 400044

通讯作者: 韩彦峰, fyh-0220@163.com

收稿日期: 2018-12-19
录用日期: 2019-03-05
网络出版日期: 2019-07-28

Hydrophilic Modification and Water Lubrication Performance of NBR Rubber UV/Ozone (UVO) Treatment

1.?

College of Mechanical Engineering, Chongqing University, Chongqing 400044, China

2.?

State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China

Corresponding author: Yanfeng HAN, fyh-0220@163.com

Received Date: 19 Dec 2018
Accepted Date: 05 Mar 2019
Available Online: 28 Jul 2019

引用本文: 王家序, 冯伟, 韩彦峰, 王立武, 李俊阳. 丁腈橡胶紫外线臭氧照射亲水改性及其水润滑性能研究[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018197.

Citation: Jiaxu WANG, Wei FENG, Yanfeng HAN, Liwu WANG and Junyang LI. Hydrophilic Modification and Water Lubrication Performance of NBR Rubber UV/Ozone (UVO) Treatment[J]. TRIBOLOGY.

以丁腈橡胶为基底,采用紫外线-臭氧照射进行亲水/超亲水表面改性,通过接触角测量仪、光学显微镜对亲水改性表面的接触角、接触角滞后和微观形貌等特性进行表征,分析了表面亲水性的改性机理,并采用MFT-5000型摩擦磨损试验机测试了丁腈橡胶亲水表面的机械耐久性和保持性. 研究结果表明:采用紫外线臭氧照射丁腈橡胶10 min,就能得到完全润湿的超亲水表面,且在紫外线臭氧照射下,丁腈橡胶与臭氧发生反应生成氧化膜,使亲水改性后的丁腈橡胶,在干摩擦和水润滑状态下均表现出较小的摩擦系数和较好的耐磨性

关键词: 丁腈橡胶, 紫外线臭氧, 亲水改性, 机械耐久性, 亲水保持性
[1]

Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity[J]. Rsc Advances, 2013, 3(3): 671–690. doi: 10.1039/C2RA21260A

[2]

Rothstein J P. Slip on superhydrophobic surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42: 89–109. doi: 10.1146/annurev-fluid-121108-145558

[3]

Bhushan B. Bioinspired structured surfaces[J]. Langmuir, 2012, 28(3): 1698–1714. doi: 10.1021/la2043729

[4]

Lv F, Rao Z, Ta N, et al. Mixed-lubrication analysis of thin polymer film overplayed metallic marine stern bearing considering wall slip and journal misalignment[J]. Tribology International, 2017, 109: 390–397. doi: 10.1016/j.triboint.2017.01.008

[5]

Zhang H, Hua M, Dong G N, et al. Boundary slip surface design for high speed water lubricated journal bearings[J]. Tribology International, 2014, 79: 32–41. doi: 10.1016/j.triboint.2014.05.022

[6]

Solomon B R, Khalil K S, Varanasi K K. Drag reduction using lubricant-impregnated surfaces in viscous laminar flow[J]. Langmuir, 2014, 30(36): 10970–10976. doi: 10.1021/la5021143

[7]

Song Dong, Song B, Hu H, et al. Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface[J]. Physical Review Fluids, 2018, 3(3): 033303. doi: 10.1103/PhysRevFluids.3.033303

[8]

Bhushan B, Jung Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction[J]. Progress in Materials Science, 2011, 56(1): 1–108. doi: 10.1016/j.pmatsci.2010.04.003

[9]

Bongaerts J H, Fourtouni K, Stokes J R. Soft-tribology: lubrication in a compliant PDMS–PDMS contact[J]. Tribology International, 2007, 40(10-12): 1531–1542. doi: 10.1016/j.triboint.2007.01.007

[10]

Huang W, Jiang L, Zhou C, et al. The lubricant retaining effect of micro-dimples on the sliding surface of PDMS[J]. Tribology International, 2012, 52: 87–93. doi: 10.1016/j.triboint.2012.03.003

[11]

Wei Q, Cai M, Zhou F, et al. Dramatically tuning friction using responsive polyelectrolyte brushes[J]. Macromolecules, 2013, 46(23): 9368–9379. doi: 10.1021/ma401537j

[12]

Luo J B, Wen S Z, Sheng X Y, et al. Substrate surface energy effectson a liquid lubricant film at nanometer scale[J]. Lubrication Science, 1998, (11): 23–36.

[13]

杨淑燕, 郭峰, 马冲, 等. 固液润湿性对流体动压润滑薄膜的影响[J]. 摩擦学学报, 2010, 30(2): 203–208. doi: 10.16078/j.tribology.2010.02.015

Yang Shuyan, Guo Feng, Ma Chong, et al. Influences of the liquid/solid wettability on thin hydrodynamic lubrication films[J]. Tribology, 2010, 30(2): 203–208. doi: 10.16078/j.tribology.2010.02.015

[14]

Guo F, Wong P L. An anomalous elastohydrodynamic lubrication film: inlet dimple[J]. Journal of Tribology, 2005, 127(2): 425–434. doi: 10.1115/1.1866165

[15]

臧淑燕, 郭峰, 李超. 表面亲润性对限量供油润滑影响的研究[J]. 摩擦学学报, 2017, 37(4): 429–434. doi: 10.16078/j.tribology.2017.04.002

Zang Shuyan, Guo Feng, Li Chao. Influence of surface wettabilityon lubrication by limited lubricant supply[J]. Tribology, 2017, 37(4): 429–434. doi: 10.16078/j.tribology.2017.04.002

[16]

Guo Y, Wang J X, Li K, et al. Tribological properties and morphology of bimodal elastomeric nitrile butadiene rubber networks[J]. Materials & Design (1980-2015), 2013, 52: 861–869.

[17]

Efimenko K, Wallace W E, Genzer J. Surface modification of Sylgard-184 poly (dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment[J]. Journal of colloid and interface science, 2002, 254(2): 306–315. doi: 10.1006/jcis.2002.8594

[18]

Romero M D, Pastor M M, Martín J M, et al. Addition of ozone in the UV radiation treatment of a synthetic styrene-butadiene-styrene (SBS) rubber[J]. International journal of adhesion and adhesives, 2005, 25(4): 358–370. doi: 10.1016/j.ijadhadh.2004.12.001

[19]

Zhao Q, Li X, Gao J. Aging behavior and mechanism of ethylene–propylene-diene monomer (EPDM) rubber in fluorescent UV/condensation weathering environment[J]. polymer Degradation and Stability, 2009, 94(3): 339–343. doi: 10.1016/j.polymdegradstab.2008.12.007

[1]

. 聚合物复合薄膜改性橡胶表面结构及其摩擦性能研究[J]. 摩擦学学报, 2007, 27(2):-469.

[2]

. 水泵水润滑导轴承耐久性研究[J]. 摩擦学学报, 2009, 29(3):-469.

[3]

荣明明, 麻拴红, 蔡美荣, 周峰. 两亲性氧化石墨烯/聚(丙烯酸-甲基丙烯酸甲酯)复合水凝胶的制备及介质调控的摩擦学性能研究[J]. 摩擦学学报, 2018, 38(3):-469. doi: 10.16078/j.tribology.2018.03.008

[4]

臧淑燕, 郭峰, 李超. 表面亲润性对限量供油润滑影响的研究[J]. 摩擦学学报, 2017, 37(4):-469. doi: 10.16078/j.tribology.2017.04.002

[5]

魏强兵, 岳芹宇, 李乐乐, 付甜, 麻拴红, 周峰. 聚多巴胺辅助两性离子聚合物界面组装制备水润滑纳米涂层[J]. 摩擦学学报, 2019, 39(4):-469. doi: 10.16078/j.tribology.2019069

[6]

周广武, 王家序, 王战江, 韩彦峰, 蒲伟. 多沟槽水润滑橡胶合金轴承润滑特性研究[J]. 摩擦学学报, 2013, 33(6):-469.

[7]

潘阳, 王家序, 王飞, 邓海峰, 崔洪斌, 李金明. 考虑空化影响的水润滑橡胶合金轴承冲蚀磨损研究[J]. 摩擦学学报, 2014, 34(5):-469.

[8]

. 边界润滑条件下丁腈橡胶—金属磨损机理的研究[J]. 摩擦学学报, 1998, 18(3):-469.

[9]

崔旨桃, 郭智威, 谢心, 袁成清. 尼龙自润滑性与表面织构协同作用对HDPE基水润滑轴承摩擦磨损性能的影响[J]. 摩擦学学报, 2019, 39(4):-469. doi: 10.16078/j.tribology.2018171

[10]

. 稀土CeO2对橡胶材料耐磨性的影响[J]. 摩擦学学报, 2006, 26(2):-469.

[11]

沈明学, 董峰, 彭旭东, 孟祥铠, 王玉明. 配副金属表面粗糙度对丁腈橡胶O型圈摩擦学特性的影响[J]. 摩擦学学报, 2016, 36(3):-469. doi: 10.16078/j.tribology.2016.03.008

[12]

王其磊, 杨逢瑜, 杨倩, 陈君辉, 关红艳. 纳米Fe3O4与纳米SrO.6Fe2O3填充丁腈橡胶复合材料的摩擦磨损性能比较[J]. 摩擦学学报, 2010, 30(2):-469.

[13]

陈群, 孙见君. 自泵送流体动静压型机械密封自清洁性分析[J]. 摩擦学学报, 2019, 39(3):-469. doi: 10.16078/j.tribology.2018180

[14]

. 橡胶改性环氧树脂的摩擦学研究—材料性能和操作条件的影响[J]. 摩擦学学报, 1988, 8(2):-469.

[15]

. 稀土氧化物或合金化元素对Ni—Cr—5S合金物理机械性能和摩擦学性…[J]. 摩擦学学报, 1994, 14(4):-469.

[16]

. 磁流体密封水介质的自修复研究[J]. 摩擦学学报, 2002, 22(3):-469.

[17]

. 水润滑高速动静压轴承试验研究[J]. 摩擦学学报, 2006, 26(3):-469.

[18]

沈明学, 蔡振兵, 周琰, 彭旭东, 朱旻昊. 水介质条件下7075合金扭转复合微动磨损特性研究[J]. 摩擦学学报, 2013, 33(6):-469.

[19]

. 不同水介质润滑下GCr15钢的微动磨损特性[J]. 摩擦学学报, 2003, 23(4):-469.

[20]

. 沉淀法制备PVA/HA复合水凝胶的摩擦性能研究[J]. 摩擦学学报, 2008, 28(5):-469.

  • 计量
    • PDF下载量 (5)
    • 文章访问量 (232)
    • HTML全文浏览量 (76)
    • 引证文献数? (0)
    目录

    Figures And Tables

    丁腈橡胶紫外线臭氧照射亲水改性及其水润滑性能研究

    王家序, 冯伟, 韩彦峰, 王立武, 李俊阳