2019, 39(2):221-227. doi: 10.16078/j.tribology.2018109

基于摩擦耗散的石墨/WC-Ni干摩擦下磨损定量及预测

清华大学 摩擦学国家重点实验室,北京 100084

通讯作者: 刘莹, liuying@mail.tsinghua.edu.cn

收稿日期: 2018-08-05
录用日期: 2018-11-29
网络出版日期: 2019-03-28

A Friction-Dissipation Based Method for Quantity Model and Prediction of Graphite/WC-Ni Wear under Dry Sliding

State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China

Corresponding author: Ying LIU, liuying@mail.tsinghua.edu.cn

Received Date: 05 Aug 2018
Accepted Date: 29 Nov 2018
Available Online: 28 Mar 2019

引用本文: 张高龙, 刘莹, 王悦昶, 刘向锋. 基于摩擦耗散的石墨/WC-Ni干摩擦下磨损定量及预测[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018109.

Citation: Gaolong ZHANG, Ying LIU, Yuechang WANG and Xiangfeng LIU. A Friction-Dissipation Based Method for Quantity Model and Prediction of Graphite/WC-Ni Wear under Dry Sliding[J]. TRIBOLOGY.

从摩擦耗散的角度研究干摩擦下石墨/WC-Ni配副磨损与摩擦副摩擦耗散能量之间的规律,获得了石墨磨损与配副摩擦耗散功率之间的关系,结果表明石墨干摩擦下的磨损率与配副的摩擦耗散功率呈显着的线性关系. 单一和组合工况磨损预测试验表明:石墨磨损模型能够准确地预测不同工况下石墨的磨损量,预测结果和实际测量结果符合. 干摩擦下石墨磨损率与摩擦耗散功率之间的定量关系,物理意义明确,使用方便,结果可靠,研究结果具有重要的理论和工程应用价值.

关键词: 摩擦耗散, 石墨, 磨损模型, 组合工况, 磨损预测
[1]

Meng H C, Ludema K C. Wear models and predictive equations: their form and content[J]. Wear, 1995(181-183): 443–457.

[2]

Meng H. Wear modeling: Evaluation and categorization of wear models[D]. Michigan: The University of Michigan, 1994..

[3]

Czichos H. Tribology: a systems approach to the science and technology of friction, lubrication, and wear[J]. New York: Elsevier Scientific Publishing Company, 1978.

[4]

Klamecki B E. An entropy-based model of plastic-deformation energy-dissipation in sliding[J]. Wear, 1984, 96(3): 319–329. doi: 10.1016/0043-1648(84)90044-9

[5]

Klamecki B E. Energy-dissipation in sliding[J]. Wear, 1982, 77(1): 115–128. doi: 10.1016/0043-1648(82)90050-3

[6]

Klamecki B E. Wear - entropy production-model[J]. Wear, 1980, 58(2): 325–330. doi: 10.1016/0043-1648(80)90161-1

[7]

Zmitrowicz A. A thermodynamical model of contact, friction and wear: ⅠGoverning equations[J]. Wear, 1987, 114(2): 135–168. doi: 10.1016/0043-1648(87)90086-X

[8]

Zmitrowicz A. A thermodynamical model of contact, friction and wear: Ⅱ Constitutive-equations for materials and linearized theories[J]. Wear, 1987, 114(2): 169–197. doi: 10.1016/0043-1648(87)90087-1

[9]

Zmitrowicz A. A thermodynamical model of contact, friction and wear: Ⅲ Constitutive-equations for friction, wear and frictional heat[J]. Wear, 1987, 114(2): 199–221. doi: 10.1016/0043-1648(87)90088-3

[10]

Dai Z, Xue Q. Progress and development in thermodynamic theory of friction and wear[J]. Science in China Series E-Technological Sciences, 2009, 52(4): 844–849. doi: 10.1007/s11431-009-0075-7

[11]

戴振东, 王珉, 薛群基.摩擦体系热力学引论[M]. 北京: 国防工业出版社, 2002.

Dai Zhendong, Wang min, Xue Qunji. Introduction to tribo-thermodynamics[M]. Beijing: National Defense Industry Press, 2002(in Chinese).

[12]

Doelling K L, Ling F F, Bryant M D, et al. An experimental study of the correlation between wear and entropy flow in machinery components[J]. Journal of Applied Physics, 2000, 88(5): 2999–3003. doi: 10.1063/1.1287778

[13]

Ling F F, Bryant M D, Doelling K L. On irreversible thermodynamics for wear prediction[J]. Wear, 2002, 253(11-12): 1165–1172. doi: 10.1016/S0043-1648(02)00241-7

[14]

Bryant M D, Khonsari M M. Application of degradation-entropy generation theorem to dry sliding friction and wear[J]. Proceedings of the STLE/ASME International Joint Tribology Conference 2008, 2009: 1–3.

[15]

Aghdam A B, Khonsari M M. On the correlation between wear and entropy in dry sliding contact[J]. Wear, 2011, 270(11-12): 781–790. doi: 10.1016/j.wear.2011.01.034

[16]

Aghdam A B, Khonsari M M. Application of a thermodynamically based wear estimation methodology[J]. Journal of Tribology-Transactions of the ASME, 2016, 138(4SI).

[17]

Aghdam A B, Khonsari M M. Prediction of wear in reciprocating dry sliding via dissipated energy and temperature rise[J]. Tribology Letters, 2013, 50(3): 365–378. doi: 10.1007/s11249-013-0133-y

[18]

Aghdam A B, Khonsari M M. Prediction of wear in grease-lubricated oscillatory journal bearings via energy-based approach[J]. Wear, 2014, 318(1-2): 188–201. doi: 10.1016/j.wear.2014.06.022

[19]

Lancaster J K. Transitions in the friction and wear of carbons and graphite sliding against themselves[J]. ASLE Transactions, 1975, 18(3): 187–201. doi: 10.1080/05698197508982761

[20]

Zhu Z, Bai S, Wu J, et al. Friction and wear behavior of resin/graphite composite under dry sliding[J]. Journal of Materials Science & Technology, 2015, 31(3): 325–330.

[21]

Ramalho A, Miranda J C. The relationship between wear and dissipated energy in sliding systems[J]. Wear, 2006, 260(4): 361–367.

[22]

Zhang G L, Liu Y, Wang Y C, et al. Wear behavior of WC-Ni sliding against graphite under water lubrication[J]. Journal of Materials Science & Technology, 2017, 33(11): 1346–1352.

[1]

. 石墨对铜基自润滑材料高温摩擦磨损性能的影响[J]. 摩擦学学报, 2005, 25(3):-227.

[2]

. 石墨结构层包覆铜纳米粒子的摩擦磨损性能研究[J]. 摩擦学学报, 2008, 28(1):-227.

[3]

. SiC和石墨混杂增强铜基复合材料的高温摩擦磨损特性研究[J]. 摩擦学学报, 2006, 26(3):-227.

[4]

潘广镇, 齐乐华, 付业伟, 费杰, 张翔. 石墨改性碳布复合材料湿式摩擦磨损性能研究[J]. 摩擦学学报, 2012, 32(4):-227.

[5]

. 碳化物衍生碳与石墨的摩擦磨损性能比较[J]. 摩擦学学报, 2007, 27(2):-227.

[6]

. IG-11石墨在不同气氛中的磨损性能研究[J]. 摩擦学学报, 2005, 25(2):-227.

[7]

. 石墨及氧化铝增强AZ91D-Cex基复合材料的磨损性能研究[J]. 摩擦学学报, 2008, 28(3):-227.

[8]

赵波, 戴旭东, 张执南, 谢友柏. 柔性多体系统中间隙铰接副的磨损预测[J]. 摩擦学学报, 2013, 33(6):-227.

[9]

. 三维网络结构增强复合材料磨损模型的研究[J]. 摩擦学学报, 2006, 26(5):-227.

[10]

赵波, 戴旭东, 张执南, 谢友柏, 于海洋. 柔性对多体系统中铰接副磨损的影响[J]. 摩擦学学报, 2014, 34(6):-227.

[11]

刘麟, 杨超, MartinDienwiebel. 润滑条件下铜锌合金表面粗糙度对磨损率的影响[J]. 摩擦学学报, 2017, 37(5):-227. doi: 10.16078/j.tribology.2017.05.009

[12]

. 铝基石墨复合材料的摩擦特性与机理分析[J]. 摩擦学学报, 1999, 19(4):-227.

[13]

霍晓迪, 王青, 梁军, 张凯, 穆明. 微弧氧化一步制备石墨-PTFE共添加的自润滑膜层[J]. 摩擦学学报, 2012, 32(2):-227.

[14]

王伟, 刘小君, 刘焜. 颗粒流润滑过程中粉末层的微观破坏形式和机理分析[J]. 摩擦学学报, 2012, 32(3):-227.

[15]

. 钢摩擦磨损的概率统计模型[J]. 摩擦学学报, 1992, 12(4):-227.

[16]

. 一种柴油机磨损的预测模型与试验研究[J]. 摩擦学学报, 1996, 16(4):-227.

[17]

宿月文, 陈渭, 郭彩霞. 应用Winkler弹性基础模型的间隙铰接副磨损预测[J]. 摩擦学学报, 2012, 32(4):-227.

[18]

. 碳纳米管与石墨基底间摩擦耗散的分子动力学模拟研究[J]. 摩擦学学报, 2008, 28(5):-227.

[19]

马文林, 陆龙, 郭鸿儒, 王静波, 贾辉, 张树伟, 吕晋军. Fe-Mo-石墨和Fe-Mo-Ni-石墨的高温摩擦磨损行为[J]. 摩擦学学报, 2013, 33(5):-227.

[20]

. 用人工神经网络预测摩擦学系统磨损趋势[J]. 摩擦学学报, 1996, 16(3):-227.

  • 计量
    • PDF下载量 (6)
    • 文章访问量 (112)
    • HTML全文浏览量 (49)
    • 引证文献数  (0)
    目录

    Figures And Tables

    基于摩擦耗散的石墨/WC-Ni干摩擦下磨损定量及预测

    张高龙, 刘莹, 王悦昶, 刘向锋