2019, 39(4):396-406. doi: 10.16078/j.tribology.2019002

热氧化温度对TC4钛合金在生理盐水中腐蚀磨损性能的影响

1.?

青岛理工大学 机械与汽车工程学院,山东 青岛 266033

2.?

万博manbetⅹapp_万博app怎么提钱太黑了_万博体育app3.0 苹果,固体润滑国家重点实验室,甘肃 兰州 730000

3.?

青岛市第九人民医院,山东 青岛 266001

4.?

中国科学院宁波材料技术与工程研究所,中国科学院海洋新材料与应用技术重点实验室,浙江 宁波 315201

通讯作者: 万勇, wanyong@qut.edu.cn

收稿日期: 2019-01-03
录用日期: 2019-04-24
网络出版日期: 2019-07-28

Effects of Thermal Oxidation Temperature on Tribocorrosion Performance of TC4 Alloy in Physiological Saline Solution

1.?

School of Mechanical and Automotive Engineering, Qingdao University of Technology, Shandong Qingdao 266033, China

2.?

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu Lanzhou 730000, China

3.?

The Ninth People’s Hospital of Qingdao, Shandong Qingdao 266001

4.?

Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang Ningbo 315201, China

Corresponding author: Yong WAN, wanyong@qut.edu.cn

Received Date: 03 Jan 2019
Accepted Date: 24 Apr 2019
Available Online: 28 Jul 2019

引用本文: 曹磊, 万勇, 孙航, 徐铁伟, 蒲吉斌. 热氧化温度对TC4钛合金在生理盐水中腐蚀磨损性能的影响[J]. 摩擦学学报. doi: 10.16078/j.tribology.2019002.

Citation: Lei CAO, Yong WAN, Hang SUN, Tiewei XU and Jibin PU. Effects of Thermal Oxidation Temperature on Tribocorrosion Performance of TC4 Alloy in Physiological Saline Solution[J]. TRIBOLOGY.

本文中考察了在大气环境下经热氧化处理后TC4钛合金在生理盐水中的腐蚀磨损性能,重点研究了热氧化温度(500~900 ℃)对TC4钛合金的表面氧化物薄膜的结构及腐蚀磨损性能的影响. 结果表明:经热氧化处理后TC4钛合金表面的氧化膜的结构主要由三部分组成:TiO2与α-Al2O3混合组成的表层,以TiO2为主的亚表层以及氧扩散层内层,热氧化温度对氧化膜的物相结构、表面硬度、膜基结合性能和腐蚀磨损性能有显着影响,其中,在700 ℃下热氧化处理获得的氧化层膜基结合性能最好,表面硬度最高,耐腐蚀磨损性能最好.

关键词: Ti6Al4V, 热氧化, 温度, 腐蚀磨损, 腐蚀
[1]

陈军, 王廷询, 周伟, 等. 国内外船用钛合金及其应用[J]. 钛工业进展, 2015, 32(6): 8–12.

Chen Jun, Wang Tingxun, Zhou wei, et al. Domestic and foreign marine titanium alloy and its application[J]. Titanium Industry Progress, 2015, 32(6): 8–12.

[2]

付毓伟, 赵立平, 赵亚兵, 等. 钛合金在油气勘探开发领域的应用前景[J]. 石油钻采工艺, 2017, 39(5): 662–666.

Fu Yuwei, Zhao Liping, Zhao Yabing, et al. Application foreground of titanium alloy in petroleum exploration and development[J]. Oil Drilling & Production Technology, 2017, 39(5): 662–666.

[3]

李蒙, 凤伟中, 关蕾, 等. 航空航天紧固件用钛合金材料综述[J]. 有色金属材料与工程, 2018, 39(4): 49–53.

Li Meng, Feng Weizhong, Guan Lei, et al. Summary of titanium alloy for fastener in aerospace[J]. Nonferrous Metal Materials and Engineering, 2018, 39(4): 49–53.

[4]

张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53(12): 1555–1567. doi: 10.11900/0412.1961.2017.00324

Zhang Erlin, Wang Xiaoyan, Han Yong. Research status of biomedical porous Ti and its alloy in China[J]. Acta Metallurgica Sinica, 2017, 53(12): 1555–1567. doi: 10.11900/0412.1961.2017.00324

[5]

Molinari A, Straffelini G, Tesi B, et al. Dry sliding wear mechanisms of the Ti6Al4V alloy[J]. Wear, 1997, 208(1-2): 105–112. doi: 10.1016/S0043-1648(96)07454-6

[6]

Budinski K G. Tribological properties of titanium alloys[J]. Wear, 1991, 151(2): 203–217. doi: 10.1016/0043-1648(91)90249-T

[7]

郑超, 魏世丞, 梁义, 等. TC4钛合金在3.5%NaCl溶液中的微动腐蚀特性[J]. 稀有金属, 2018, 42(10): 1018–1023.

Zheng Chao, Wei Shicheng, Liang Yi, et al. Fretting corrosion characteristics of TC4 titanium alloy in 3.5% NaCl solution[J]. Chinese Journal of Rare Metals, 2018, 42(10): 1018–1023.

[8]

Jun C, Zhang Q. Effect of electrochemical state on corrosion–wear behaviors of TC4 alloy in artificial seawater[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(4): 1011–1018. doi: 10.1016/S1003-6326(16)64164-X

[9]

陈君, 阎逢元, 王建章. 海水环境下TC4钛合金腐蚀磨损性能的研究[J]. 摩擦学学报, 2012, 32(1): 1–6. doi: 10.16078/j.tribology.2012.01.005

Chen Jun, Yan Fengyuan, Wang Janzhang. Corrosion wear properties of TC4 titanium alloy in artificial seawater[J]. Tribology, 2012, 32(1): 1–6. doi: 10.16078/j.tribology.2012.01.005

[10]

Runa M J, Mathew M T, Rocha L A. Tribocorrosion response of the Ti6Al4V alloys commonly used in femoral stems[J]. Tribology International, 2013, 68: 85–93. doi: 10.1016/j.triboint.2013.09.022

[11]

夏木建, 章跃, 周广宏, 等. 医用Ti6Al4V合金表面改性研究进展[J]. 腐蚀与防护, 2012, 33(8): 645–647.

Xia Mujian, Zhang Yue, Zhou Guanghong, et al. Research progress in surface modification of biomedical Ti6Al4V alloy[J]. Corrosion & Protection, 2012, 33(8): 645–647.

[12]

Zhou M, Xiong P, Jia Z, et al. Improved the in vitro cell compatibility and apatite formation of porous Ti6Al4V alloy with magnesium by plasma immersion ion implantation[J]. Materials Letters, 2017, 202: 9–12. doi: 10.1016/j.matlet.2017.05.088

[13]

Wang J, Ma J, Huang W, et al. The investigation of the structures and tribological properties of F-DLC coatings deposited on Ti-6Al-4V alloys[J]. Surface and Coatings Technology, 2017, 316: 22–29. doi: 10.1016/j.surfcoat.2017.02.065

[14]

Oliveira V, Aguiar C, Vazquez A M, et al. Improving corrosion resistance of Ti–6Al–4V alloy through plasma- assisted PVD deposited nitride coatings[J]. Corrosion Science, 2014, 88: 317–327. doi: 10.1016/j.corsci.2014.07.047

[15]

Fazel M, Salimijazi H R, Golozar M A. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process[J]. Applied Surface Science, 2015, 324: 751–756. doi: 10.1016/j.apsusc.2014.11.030

[16]

Gu Y, Chen L, Yue W, et al. Corrosion behavior and mechanism of MAO coated Ti6Al4V with a grain-fined surface layer[J]. Journal of Alloys and Compounds, 2016, 664: 770–776. doi: 10.1016/j.jallcom.2015.12.108

[17]

Lv Y H, Li J, Tao Y F, et al. High-temperature wear and oxidation behaviors of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti6Al4V by laser cladding[J]. Applied Surface Science, 2017, 402: 478–494. doi: 10.1016/j.apsusc.2017.01.118

[18]

Wang S, Liao Z, Liu Y, et al. Influence of thermal oxidation temperature on the microstructural and tribological behavior of Ti6Al4V alloy[J]. Surface and Coatings Technology, 2014, 240: 470–477. doi: 10.1016/j.surfcoat.2014.01.004

[19]

Guleryuz H, Cimenoglu H. Surface modification of a Ti-6Al-4V alloy by thermal oxidation[J]. Surface and Coatings Technology, 2005, 192(2-3): 164–170. doi: 10.1016/j.surfcoat.2004.05.018

[20]

Wang S, Liu Y, Zhang C, et al. The improvement of wettability, biotribological behavior and corrosion resistance of titanium alloy pretreated by thermal oxidation[J]. Tribology International, 2014, 79: 174–182. doi: 10.1016/j.triboint.2014.06.008

[21]

Ashrafizadeh A, Ashrafizadeh F. Structural features and corrosion analysis of thermally oxidized titanium[J]. Journal of Alloys and Compounds, 2009, 480(2): 849–852. doi: 10.1016/j.jallcom.2009.02.079

[22]

Güleryüz H, ?imeno?lu H. Effect of thermal oxidation on corrosion and corrosion–wear behaviour of a Ti–6Al–4V alloy[J]. Biomaterials, 2004, 25(16): 3325–3333. doi: 10.1016/j.biomaterials.2003.10.009

[23]

Luo Y, Chen W, Tian M, et al. Thermal oxidation of Ti6Al4V alloy and its biotribological properties under serum lubrication[J]. Tribology International, 2015, 89: 67–71. doi: 10.1016/j.triboint.2014.12.022

[24]

Guleryuz H, Cimenoglu H. Oxidation of Ti-6Al-4V alloy[J]. Journal of Alloys and Compounds, 2009, 472(1-2): 0–246.

[25]

王娅婷, 林乃明, 唐宾. 钛及钛合金热氧化工艺的研究现状[J]. 腐蚀与防护, 2014, 35(10): 965–970.

Wang Yating, Lin Naiming, Tang Bin. Development of thermal oxidation of titanium and titanium alloys[J]. Corrosion & Protection, 2014, 35(10): 965–970.

[26]

秦建峰, 王馨舶, 邹娇娟, 等. 热氧化提高钛及钛合金表面性能的研究进展[J]. 表面技术, 2017, 46(1): 1–8.

Qin Jianfeng, Wang Xinbo, Zou Jiaojuan, et al. Research progress of thermal oxidation effect on improving surface properties of titanium and titanium alloy[J]. Surface Technology, 2017, 46(1): 1–8.

[27]

王松, 廖振华, 刘伟强. 医用钛合金热氧化处理工艺及其耐磨损、耐腐蚀性能和生物活性的研究进展[J]. 中国有色金属学报, 2014, 24(6): 1466–1473.

Wang Song, Liao Zhenhua, Liu Weiqiang. Research progress on thermal oxidation process and wear, corrosion resistance and bioactivity of biomedical grade titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(6): 1466–1473.

[28]

Du H L, Datta P K, Lewis D B, et al. Air oxidation behaviour of Ti6Al4V alloy between 650 and 850°[J]. Corrosion Science, 1994, 36(4): 631–642. doi: 10.1016/0010-938X(94)90069-8

[29]

Bailey R, Sun Y. Corrosion and tribocorrosion performance of pack-carburized commercially pure titanium with limited oxygen diffusion in a 0.9% NaCl solution[J]. Journal of Bio- and Tribo-Corrosion, 2018, 4(1): 6. doi: 10.1007/s40735-017-0123-y

[30]

Manhabosco T M, Tamborim S M, Santos C B D, et al. Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution[J]. Corrosion Science, 2011, 53(5): 1786–1793. doi: 10.1016/j.corsci.2011.01.057

[31]

邹娇娟.油套管用Ti6Al4V合金热氧化表面改性及其典型服役行为研究[D].太原: 太原理工大学, 2016..

Zou Jiaojuan. Study on typical service behaviors of surface thermal oxidation modified Ti6Al4V alloy used for oil casing tube[D]. Taiyuan: Taiyuan University of Technology, 2016(in Chinese).

[32]

鲍利索娃, 钛合金金相学[M].陈石卿, 译.北京:国防工业出版社, 1986..

Борисова. Titanium alloy metallography[M]. Chen Shiqing, translation. Beijing: National Defense Industry Press, 1986..

[33]

Yamamoto O, Alvarez K, Kikuchi T, et al. Fabrication and characterization of oxygen-diffused titanium for biomedical applications[J]. Acta Biomaterialia, 2009, 5(9): 3605–3615. doi: 10.1016/j.actbio.2009.06.011

[34]

Yan W, Wang X X. Surface hardening of titanium by thermal oxidation[J]. Journal of Materials Science, 2004, 39(16-17): 5583–5585.

[35]

林乃明, 王娅婷, 邹娇娟, 等. 热氧化温度对Ti6Al4V耐磨性的影响[J]. 稀有金属材料与工程, 2016(6): 1615–1619.

Lin Naiming, Wang Yating, Zou Jiaojuan, et al. Effect of thermal oxidation temperature on wear resistance of Ti6Al4V alloy[J]. Rare Metal Materials and Engineering, 2016(6): 1615–1619.

[36]

Ma H L, Yang J Y, Dai Y, et al. Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser[J]. Applied Surface Science, 2007, 253(18): 7497–7500. doi: 10.1016/j.apsusc.2007.03.047

[37]

Swamy V, Muddle B C, Dai Q. Size-dependent modifications of the Raman spectrum of rutile TiO2[J]. Applied Physics Letters, 2006, 89(16): 163118–0. doi: 10.1063/1.2364123

[1]

戚宝运, 李亮, 何宁, 赵威, 王震. 微织构刀具正交切削Ti6Al4V的试验研究[J]. 摩擦学学报, 2011, 31(4):-406.

[2]

陈君, 阎逢元, 王建章. 海水环境下TC4钛合金腐蚀磨损性能的研究[J]. 摩擦学学报, 2012, 32(1):-406.

[3]

王林青, 周永涛, 王军军, 王忠维, 黄伟九. TC4钛合金在模拟海水中腐蚀?磨损交互行为研究[J]. 摩擦学学报, 2019, 39(2):-406. doi: 10.16078/j.tribology.2018086

[4]

孙奇春, 胡天昌, 樊恒中, 徐仰涛, 张永胜, 胡丽天. 热氧化改性TC4合金在液体润滑条件下的摩擦学行为研究[J]. 摩擦学学报, 2017, 37(4):-406. doi: 10.16078/j.tribology.2017.04.010

[5]

曹磊, 孙航, 万勇, 杨淑燕, 徐铁伟. 全合成机油润滑下热氧化改性TC4钛合金的摩擦学行为[J]. 摩擦学学报, 2019, 39(1):-406. doi: 10.16078/j.tribology.2018122

[6]

. TC11钛合金在人造海水中的腐蚀磨损特性研究[J]. 摩擦学学报, 2008, 28(2):-406.

[7]

谢明玲, 杨皎, 张广安, 薛群基, 崔学军. Si-DLC薄膜在硝酸介质中的腐蚀磨损行为与机理[J]. 摩擦学学报, 2017, 37(4):-406. doi: 10.16078/j.tribology.2017.04.013

[8]

. 湿磨工况下冲击功对高锰钢腐蚀磨损交互作用的影响[J]. 摩擦学学报, 2009, 29(1):-406.

[9]

. 两种油套管钢在两相流中的腐蚀磨损特性研究[J]. 摩擦学学报, 2006, 26(1):-406.

[10]

耿哲, 段德莉, 刘阳, 李曙. 环境气氛与温度对钴基碳化钨超音速火焰喷涂(HVOF)层磨损行为的影响[J]. 摩擦学学报, 2014, 34(3):-406.

[11]

程冰雪, 贾丹, 钱绪政, 向亚玲, 李健. 基于拉曼光谱的TMPTO热氧化特性研究[J]. 摩擦学学报, 2016, 36(1):-406. doi: 10.16078/j.tribology.2016.01.002

[12]

朱忠猛, 蒋晗. 第21届材料磨损国际会议的总结评述[J]. 摩擦学学报, 2017, 37(4):-406. doi: 10.16078/j.tribology.2017.04.019

[13]

. 铝青铜在不同介质中的摩擦磨损行为研究[J]. 摩擦学学报, 2007, 27(2):-406.

[14]

. 超细晶粒硬质合金的高速摩擦磨损特性研究[J]. 摩擦学学报, 2008, 28(1):-406.

[15]

. 磨料流加工过程中介质黏温特性对金属磨损性能的影响[J]. 摩擦学学报, 2008, 28(2):-406.

[16]

高健, 余丙军, 金晨宁, 肖晨, 钱林茂. 不同温度下砷化镓表面摩擦诱导选择性刻蚀特性研究[J]. 摩擦学学报, 2016, 36(4):-406. doi: 10.16078/j.tribology.2016.04.011

[17]

. 磁头/磁盘滑动接触下磁盘温度及热退磁临界条件的研究[J]. 摩擦学学报, 2005, 25(5):-406.

[18]

. 温度对内燃机排气凸轮/挺柱润滑的影响研究[J]. 摩擦学学报, 2006, 26(4):-406.

[19]

. 钝化处理1Cr18Ni9Ti不锈钢在H2O2 水溶液中的摩擦学性能初探[J]. 摩擦学学报, 2009, 29(1):-406.

[20]

苏鹏, 熊云, 刘晓, 杨鹤, 范林君. 不同载荷和温度下碳烟对柴油机油摩擦学性能的影响[J]. 摩擦学学报, 2017, 37(4):-406. doi: 10.16078/j.tribology.2017.04.009

  • 计量
    • PDF下载量 (20)
    • 文章访问量 (255)
    • HTML全文浏览量 (81)
    • 引证文献数? (0)
    目录

    Figures And Tables

    热氧化温度对TC4钛合金在生理盐水中腐蚀磨损性能的影响

    曹磊, 孙航, 徐铁伟, 万勇, 蒲吉斌