2012, 32(4):332-337.

熔融渗硅法制备C/C-SiC复合材料的干态摩擦磨损行为及机制

1.?

中南大学 粉末冶金国家重点实验室, 长沙 410083

通讯作者: 李专, li_zhuan@yahoo.com.cn

收稿日期: 2011-10-12

基金项目: The project was supported by the National Natural Science Foundation of China (51072231) and China Postdoctoral Science Foundation (20110491278) and Freedom Explore Program of Central South University(2011 QNZT43).
国家自然科学基金(51072231)、中国博士后科学基金(20110491278)和中南大学自由探索计划 (2011QNZT43) 资助.

Tribological Behavior and Mechanism of Carbon Fibre Reinforced Carbon and SiC Dual-matrice Composites

1.?

State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Corresponding author: LI Zhuan, li_zhuan@yahoo.com.cn

Received Date: 12 Oct 2011

引用本文: 李专, 肖鹏, 熊翔. 熔融渗硅法制备C/C-SiC复合材料的干态摩擦磨损行为及机制[J]. 摩擦学学报, 2012, 32(4): 332-337.

Citation: LI Zhuan, XIAO Peng and XIONG Xiang. Tribological Behavior and Mechanism of Carbon Fibre Reinforced Carbon and SiC Dual-matrice Composites[J]. TRIBOLOGY, 2012, 32(4): 332-337.

本文以针刺炭纤维整体毡为预制体,采用化学气相渗透法和熔融渗硅法制得炭纤维增强双基体炭/碳化硅 (C/C-SiC)摩擦材料;研究了C/C-SiC的干态摩擦磨损行为及机理.研究结果表明:C/C-SiC摩擦材料和30CrMoSiVA合金钢配对摩擦副制动性能稳定,当制动速度从5 000 r/min升至7 500 r/min,摩擦系数由0.33降至0.29,C/C-SiC线磨损率相应由2.01 μm/次升至3.40 μm/次;C/C-SiC与对偶件的摩擦是犁沟效应和黏着效应共同作用的结果,磨损是磨粒磨损、黏着磨损、氧化磨损和疲劳磨损相互作用的结果.

关键词: C/C-SiC, 化学气相渗透, 熔融渗硅, 摩擦材料
[1]

Krenkel W, Heidenreich B, Renz R. C/C-SiC composites for advanced friction systems[J]. Advanced Engineering Materials, 2002,4 (8):427-436.

[2]

Xiao P, Li Z, Xiong X. Microstructure and tribological properties of 3D needle-punched C/C-SiC brake composites[J]. Solid State Sciences, 2010, 12(4): 617-623.

[3]

Gadow R, Kienzle A. Processing and manufacturing of C-fibre reinforced SiC-composites for disk brakes[C]. In: Proc 6th Int Symp on Ceramic Mat and Components for Engines, Arita, Japan, 1997:412-418.

[4]

Fan S W, Xu Y D, Zhang L T,et al. Prepartion and tribological properties of C/SiC friction materials[J].Journal of Inorganic Materials, 2006, 21(4): 927-934 (inChinese)[范尚武, 徐永东, 张立同, 等. C/SiC刹车材料的制备及摩擦磨损性能[J]. 无机材料学报, 2006, 21(4): 927-934]

[5]

Krenkel W, Henke T. Design of high performance CMC brake disks[J]. Key Eng Mat, 1999, 164-165: 421-424.

[6]

Sundar V, Mark P, Terence W, et al.C/SiC materials evaluation for aircraft applications[A]. In: Proceedings of the 4th International Conference on High Temperature Ceramic Matrix Composites (HT-CMC4)[C]. Munich, Germany, 2001: 802-808.

[7]

Wang J P, Jin Z Ho, Qian J M, et al. Study of rapid fabrication and microstructure of C/C-SiC composites[J]. Rare Metal Materials and Engineering, 2006,35(2):223-226 (in Chinese)[王继平, 金志浩, 钱军民, 等. C/C-SiC材料的快速制备及显微结构研究[J]. 稀有金属材料与工程,2006,35(2):223-226]

[8]

Li Z, Xiao P, Xiong X. Preparation and friction behavior of C/C-SiC brake composites fabricated by warm compacted-in situ reaction[J]. International Journal of Minerals Metallurgy and Materials, 2010, 11(4):500-505.

[9]

Li Z, Xiao P, Xiong X, et al. Manufacture and characterization of carbon fibre reinforced C/SiC dual matrix composite[J]. Tribology, 2010,30(3):273-278 (in Chinese)[李专, 肖鹏, 熊翔, 等. 炭纤维增强双基体炭/碳化硅(C/C-SiC)制动材料的性能[J]. 摩擦学学报, 2010, 30(3): 273-278]

[10]

Xiao P, Li Z, Xiong X. C/C-SiC composites for advanced friction systems[J]. Journal of Materials Engineering, 2009, S(2): 263-267 (in Chinese)[肖鹏,李专,熊翔. 高性能制动系统用炭纤维增强炭和SiC双基体(C/C-SiC)复合材料[J]. 材料工程, 2009, S(2): 263-267]

[11]

Bowden F P, Tabor D. The friction and lubrication of solid[M]. Oxford: Clarenden Press, 1964:25-26.

[12]

Hogmark S,Olsson M. Tribological performance of ceramical materials in face seal applications[C]. In:Hawthorne H M,Troczynski T. Adcanced ceramics for structural and tribological applications. British Columbia:The Metallurical Society of CIM,1995. 199-213.

[13]

Blanco C, Bermejo J, Marsh H, et al. Chemical and physical properties of carbon as related to brake performance[J]. Wear, 1997, 213(1): 1-12.

[14]

Wen S Z, Huang P . Principles of tribology (Second edition)[M]. Peking: Tsinghua University Press, 2002:122-125 (in Chinese) [温诗铸, 黄平. 摩擦学原理[M] (第2版). 北京:清华大学出版社, 2002:122-125]

[15]

Panier S, Dufrenoy P,Weichert D.An experimental investigation of hot spots in railway disc brakes[J].Wear,2004, 256:764-773.

[1]

李专, 肖鹏, 熊翔, 朱苏华. 炭纤维增强双基体炭/碳化硅(C/C-SiC)制动材料的性能[J]. 摩擦学学报, 2010, 30(3):-337.

[2]

王海庆, 吴行阳, 周广荣, 丛培红. 乳胶粒化学改性酚醛树脂合成闸片的制动性能研究[J]. 摩擦学学报, 2011, 31(2):-337.

[3]

. 超声马达梯度涂层摩擦材料研究[J]. 摩擦学学报, 2009, 29(1):-337.

[4]

丛培红, 吴行阳, 卜娟, 李同生. 制动用有机摩擦材料的研究进展[J]. 摩擦学学报, 2011, 31(1):-337.

[5]

刘伯威, 杨阳, 刘咏, 刘申飞. 硫化锑质量分数对汽车摩擦材料性能的影响[J]. 摩擦学学报, 2016, 36(4):-337. doi: 10.16078/j.tribology.2016.04.010

[6]

高飞, 杨亭亭, 符蓉, 韩晓明. 层片式复合材料摩擦性能与表面形态的研究[J]. 摩擦学学报, 2013, 33(4):-337.

[7]

钟爱文, 姚萍屏, 肖叶龙, 张忠义, 周海滨, 樊坤阳, 贡太敏, 赵林. 大气环境空间用铜基摩擦材料摩擦学行为及可靠性寿命研究[J]. 摩擦学学报, 2017, 37(5):-337. doi: 10.16078/j.tribology.2017.05.017

[8]

. 车用摩擦材料的摩擦学研究进展[J]. 摩擦学学报, 1999, 19(4):-337.

[9]

刘逸众, 肖鹏, 李专. Cu改性C/C-SiC摩擦材料组织结构及摩擦磨损性能研究[J]. 摩擦学学报, 2012, 32(4):-337.

[10]

. 制动速度对C/C-SiC复合材料摩擦磨损性能的影响[J]. 摩擦学学报, 2006, 26(1):-337.

[11]

. 基于行波型超声马达的超声波振动减摩试验研究[J]. 摩擦学学报, 2007, 27(1):-337.

[12]

. C/C-SiC复合材料的制备及其湿式摩擦磨损性能研究[J]. 摩擦学学报, 2007, 27(6):-337.

[13]

. 不同结构C/SiC复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2006, 26(3):-337.

[14]

. SiC/(W,Ti)C梯度陶瓷喷嘴材料的制备及其冲蚀磨损机理研究[J]. 摩擦学学报, 2007, 27(1):-337.

[15]

. 稀土催化低温熔融渗硫层的摩擦学性能研究[J]. 摩擦学学报, 2003, 23(2):-337.

[16]

. 脉冲直流等离子体辅助化学气相沉积TiN和TiCN薄膜摩擦磨损特性研究[J]. 摩擦学学报, 2003, 23(3):-337.

[17]

. 气相沉积TiN和Ti(C,N)镀层的热磨损性能[J]. 摩擦学学报, 1994, 14(3):-337.

[18]

. 脉冲直流等离子体增强化学气相沉积Ti—Si—N纳米薄膜的摩擦磨损特性[J]. 摩擦学学报, 2003, 23(6):-337.

[19]

. 直流射频等离子体增强化学气相沉积类金刚石碳薄膜的结构及摩擦学性能研究[J]. 摩擦学学报, 2004, 24(1):-337.

[20]

. 用等离子体增强化学气相沉积技术制备类金刚石碳薄膜的摩擦磨损性能研究[J]. 摩擦学学报, 2005, 25(4):-337.

  • 计量
    • PDF下载量 (1449)
    • 文章访问量 (3396)
    • 引证文献数? (0)
    目录

    Figures And Tables

    熔融渗硅法制备C/C-SiC复合材料的干态摩擦磨损行为及机制

    李专, 肖鹏, 熊翔