2019, 39(2):213-220. doi: 10.16078/j.tribology.2018117

温度对Cu-12.5Ni-5Sn-石墨自润滑复合材料摩擦学性能的影响

1. 

河南科技大学 高端轴承摩擦学技术与应用国家地方联合工程实验室,河南 洛阳 471023

2. 

兰州文理学院 化工学院, 甘肃 兰州 730000

3. 

兰州工业研究院,甘肃 兰州 730050

4. 

万博manbetⅹapp_万博app怎么提钱太黑了_万博体育app3.0 苹果 固体润滑国家重点实验室,甘肃 兰州 730000

通讯作者: 李珍, lizhen@haust.edu.cn张永振, yzzhang@haust.edu.cn

收稿日期: 2018-08-17
录用日期: 2018-11-29
网络出版日期: 2019-03-28

Effect of Temperature on Tribological Properties of Cu-12.5Ni-5Sn-Graphite Self-Lubricating Composites

1. 

National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Henan Luoyang 471023, China

2. 

School of Chemical Engineering, Lanzhou University of Arts and Science, Gansu Lanzhou 730000, China

3. 

Lanzhou Institute of Industry Research, Gansu Lanzhou 730050, China

4. 

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu Lanzhou 730000, China

Corresponding author: Zhen LI, lizhen@haust.edu.cnYongzhen ZHANG, yzzhang@haust.edu.cn

Received Date: 17 Aug 2018
Accepted Date: 29 Nov 2018
Available Online: 28 Mar 2019

引用本文: 王小超, 李珍, 陆龙, 杨正海, 王静波, 张永振. 温度对Cu-12.5Ni-5Sn-石墨自润滑复合材料摩擦学性能的影响[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018117.

Citation: Xiaochao WANG, Zhen LI, Long LU, Zhenghai YANG, Jingbo WANG and Yongzhen ZHANG. Effect of Temperature on Tribological Properties of Cu-12.5Ni-5Sn-Graphite Self-Lubricating Composites[J]. TRIBOLOGY.

采用粉末冶金方法制备出了Cu-12.5Ni-5Sn-石墨自润滑复合材料,通过改变石墨的含量来研究该复合材料的力学性能和在不同摩擦试验温度下的摩擦磨损性能,采用SEM和Raman分析磨损表面,进而讨论复合材料的摩擦、磨损和润滑机制. 结果表明:复合材料的硬度和屈服强度随着石墨含量的增加而逐渐降低;温度对不同石墨含量的复合材料的摩擦磨损性能有显着的影响,在室温下,石墨质量分数为1%和3%的石墨复合材料的摩擦系数和磨损率明显小于5%石墨复合材料;在300 ℃下,石墨质量分数为3%时,复合材料的摩擦磨损性能最好;在500 ℃下,石墨质量分数为5%的石墨复合材料的摩擦磨损性能最好. 在室温下,复合材料具有较好自润滑性的主要原因是形成了几乎光滑连续的石墨润滑膜. 在300和500 ℃下,由金属氧化物和石墨组成的混合物润滑膜是复合材料保持自润滑性的主要原因.

关键词: Cu-12.5Ni-5Sn, 粉末冶金, 自润滑复合材料, 高温, 摩擦磨损
[1]

卢玲, 朱定一, 汪才良. 金属基/石墨固体自润滑材料的研究进展[J]. 材料导报, 2007, 21(2): 38–42. doi: 10.3321/j.issn:1005-023X.2007.02.010

Lu Ling, Zhu Dingyi, Wang Cailiang. Recent development of metal-matrix/graphite solid self-lubricating materials[J]. Materials Review, 2007, 21(2): 38–42. doi: 10.3321/j.issn:1005-023X.2007.02.010

[2]

Canakci A, Cuvalci H, Varol T, et al. Microstructure and abrasive wear behavior of CuSn10-graphite composites produced by powder metallurgy[J]. Powder Metallurgy and Metal Ceramics, 2014, 53(5-6): 275–287. doi: 10.1007/s11106-014-9614-2

[3]

陈淑娴, 凤仪, 李庶, 等. 室温及气氛条件下铜基自润滑复合材料的摩擦磨损性能研究[J]. 润滑与密封, 2009, 34(6): 23–27. doi: 10.3969/j.issn.0254-0150.2009.06.007

Chen Shuxian, Feng Yi, Li Shu, et al. Friction and wear behaviors of Cu-based self-lubrication composites under room temperature and in atmosphere[J]. Lubrication Engineering, 2009, 34(6): 23–27. doi: 10.3969/j.issn.0254-0150.2009.06.007

[4]

岳洋, 孙逸翔, 孙毓明, 等. 载荷和电压对纯铜滚动载流摩擦学性能的影响[J]. 摩擦学学报, 2018, 38(1): 67–74. doi: 10.16078/j.tribology.2018.01.009

Yue Yang, Sun Yixiang, Sun Yuming, et al. Effect of load and voltage on the tribo-electric behaviour of rolling Cu pairs[J]. Tribology, 2018, 38(1): 67–74. doi: 10.16078/j.tribology.2018.01.009

[5]

Allam I M. Solid lubricants for applications at elevated temperatures[J]. Journal of Materials Science, 1991, 26(15): 3977–3984. doi: 10.1007/BF02402936

[6]

王静波, 吕晋军, 宁莉萍, 等. 锡青铜基自润滑材料的摩擦学特性研究[J]. 摩擦学学报, 2001, 21(2): 110–113. doi: 10.3321/j.issn:1004-0595.2001.02.008

Wang Jingbo, Lu Jinjun, Ning Liping, et al. Study on the tribological behavior of bronze-matrix self-lubricating composites[J]. Tribology, 2001, 21(2): 110–113. doi: 10.3321/j.issn:1004-0595.2001.02.008

[7]

Kestursatya M, Kim J K, Rohatgi P K. Wear performance of copper-graphite composite and a leaded copper alloy[J]. Materials Science and Engineering A, 2003, 339(1-2): 150–158. doi: 10.1016/S0921-5093(02)00114-4

[8]

Zhan Y Z, Zhang G D. Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles[J]. Tribology Letters, 2004, 17(1): 91–98. doi: 10.1023/B:TRIL.0000017423.70725.1c

[9]

Cui G J, Niu N Y, Zhu S Y, et al. Dry-sliding tribological properties of bronze-graphite composities[J]. Tribology Letters, 2012, 48(2): 111–122. doi: 10.1007/s11249-012-0007-8

[10]

曹海江.新型铜基自润滑复合材料制备及其结构与性能的研究[D].秦皇岛: 燕山大学, 2011.

Cao Haijiang. The study of preparation, microstructure and properties of Cu-based self-lubricating composites[D]. Qinhuangdao: Yanshan University, 2011(in Chinese).

[11]

Wang Y, Zhang L, Xiao J K, et al. The tribo-corrosion behavior of Cu-9 wt% Ni-6 wt% Sn alloy[J]. Tribology International, 2016, 94: 260–268. doi: 10.1016/j.triboint.2015.06.031

[12]

杨胜利, 谢伟滨. Cu-Ni-Sn合金的研究与应用[J]. 上海有色金属, 2012, 33(1): 41–45. doi: 10.3969/j.issn.1005-2046.2012.01.010

Yang Shengli, Xie Weibin. A review on the research and applications of Cu-Ni-Sn alloys[J]. Shanghai Nonferrous Metals, 2012, 33(1): 41–45. doi: 10.3969/j.issn.1005-2046.2012.01.010

[13]

刘洋, 罗远辉, 王力军. Cu-15Ni-8Sn弹性合金的研究及发展趋势[J]. 金属功能材料, 2013, 20(2): 52–56.

Liu Yang, Liu Yuanhui, Wang Lijun. Research and development trend of Cu-15Ni-8Sn alloy[J]. Metallic Functional Materials, 2013, 20(2): 52–56.

[14]

Zhao J C, Notis M R. Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy[J]. Acta Materialia, 1998, 46(12): 4203–4218. doi: 10.1016/S1359-6454(98)00095-0

[15]

Rhu J C, Kim S S, Jung Y C, et al. Tensile strength of thermomechanically processed Cu-9Ni-6Sn alloys[J]. Metallurgical and Materials Transactions A, 1999, 30(10): 2649–2657. doi: 10.1007/s11661-999-0305-4

[16]

王江文.Cu-Ni-Sn自润滑复合材料的制备与摩擦学性能研究[D]. 兰州: 兰州理工大学, 2018.

Wang Jiangwen. The research on the preparation and tribological properties of Cu-Ni-Sn self-lubricating composites[D].Lanzhou: Lanzhou University of Technology, 2018(in Chinese).

[17]

Feng C F, Wang Y, Chen W, et al. The mechanical mixed layer and its role in Cu-15Ni-8Sn/graphite composites[J]. Tribology Transations, 2016, 60(1): 135–145.

[18]

尹延国, 刘君武, 郑治祥, 等. 石墨对铜基自润滑材料高温摩擦磨损性能的影响[J]. 摩擦学学报, 2005, 25(3): 216–220. doi: 10.3321/j.issn:1004-0595.2005.03.006

Yin Yanguo, Liu Junwu, Zheng Zhixiang, et al. Effect of graphite on the friction and wear properties of Cu alloy-matrix self-lubricating composites at elevated temperature[J]. Tribology, 2005, 25(3): 216–220. doi: 10.3321/j.issn:1004-0595.2005.03.006

[19]

Du S M, Wang X C, Li Z, et al. Effect of Ni content on microstructure and characterization of Cu-Ni-Sn alloys[J]. Materials, 2018, 11(7): 1108–1116. doi: 10.3390/ma11071108

[20]

浩宏奇, 丁华东, 李雅文, 等. 石墨含量对铜基材料摩擦磨损性能的影响[J]. 中国有色金属学报, 1997, 7(3): 120–123. doi: 10.3321/j.issn:1004-0609.1997.03.030

Hao Hongqi, Ding Huadong, Li Yawen, et al. Effect of graphite content on friction and wear properties of copper base material[J]. The Chinese Journal of Nonferrous Metals, 1997, 7(3): 120–123. doi: 10.3321/j.issn:1004-0609.1997.03.030

[21]

Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders[J]. Wear, 2002, 253(7): 699–710.

[22]

Zhang L, Xiao J K, Zhou K C. Sliding wear behavior of silver-molybdenum disulfide composite[J]. Tribology Transactions, 2012, 55(4): 473–480. doi: 10.1080/10402004.2012.671452

[23]

Hines E P, Rayner J L, Barbee R, et al. Friction studies of graphite and mixtures of graphite with several metallic oxides and salts at temperatures to 1 000 F[J]. Technical Report Archive & Image Library, 1956, 23(2): 144–156.

[24]

孔晓丽, 刘勇兵, 陆有, 等. 粉末冶金高温金属基固体自润滑材料[J]. 粉末冶金技术, 2001, 19(2): 86–92. doi: 10.3321/j.issn:1001-3784.2001.02.007

Kong Xiaoli, Liu Yongbing, Lu You, et al. P/M Metal-matrix high-temperature solid self-lubricating materials[J]. Powder Metallurgy Technology, 2001, 19(2): 86–92. doi: 10.3321/j.issn:1001-3784.2001.02.007

[25]

Sliney H E. Solid lubricant materials for high temperature-a review[J]. Tribology International, 1982, 15(5): 303–315. doi: 10.1016/0301-679X(82)90089-5

[1]

王江文, 陆龙, 孟军虎, 郭鸿儒, 王静波, 吴有智. Cu-2Ni-5Sn-(石墨+PbO)自润滑复合材料高温摩擦学性能的研究[J]. 摩擦学学报, 2018, 38(1):-220. doi: 10.16078/j.tribology.2018.01.011

[2]

王奇, 姚萍屏, 周海滨, 贡太敏, 樊坤阳, 凌攀, 李昆. 含Cr铜基粉末冶金摩擦材料的磨损图研究[J]. 摩擦学学报, 2017, 37(3):-220. doi: 10.16078/j.tribology.2017.03.012

[3]

郭志成, 李长生, 唐华, 阎逢元, 孙建荣, 刘金银子. Fe-Ni基高温自润滑复合材料摩擦磨损特性研究[J]. 摩擦学学报, 2013, 33(3):-220.

[4]

李珍, 张亚丽, 周健松, 王静波, 陈建敏. Ni-Mo基高温自润滑复合材料摩擦学性能的研究[J]. 摩擦学学报, 2018, 38(2):-220. doi: 10.16078/j.tribology.2018.02.006

[5]

张晓化, 刘道新, 王小锋, 唐宾. TIN / Ti 复合膜与多层膜对Ti811 合金高温摩擦性能及微动疲劳抗力的影响[J]. 摩擦学学报, 2009, 29(4):-220.

[6]

郭俊德, 何世权, 马文林, 孟军虎, 王静波, 陆龙. Fe-Mo-Ni-Cu-石墨高温自润滑复合材料的摩擦学性能研究[J]. 摩擦学学报, 2014, 34(6):-220.

[7]

. 刹车条件对铁基粉末冶金材料摩擦磨损性能的影响[J]. 摩擦学学报, 2007, 27(4):-220.

[8]

韩明, 杜建华, 宁克焱, 许成法. 湿式铜基粉末冶金摩擦材料黏着损伤研究[J]. 摩擦学学报, 2014, 34(6):-220.

[9]

. 石墨对铜基自润滑材料高温摩擦磨损性能的影响[J]. 摩擦学学报, 2005, 25(3):-220.

[10]

张辉, 邓建新, 吴泽, 艾兴, 赵军. Al2O3/TiC基陶瓷刀具材料的高温摩擦磨损性能研究[J]. 摩擦学学报, 2011, 31(4):-220.

[11]

. 微孔贯通型高温自润滑金属陶瓷的摩擦磨损性能研究[J]. 摩擦学学报, 2006, 26(4):-220.

[12]

陕钰, 刘峰, 汪建义, 王文珍, 贾均红. NiCrW-Al2O3-SrCO3-Ag金属陶瓷复合材料的高温摩擦学性能研究[J]. 摩擦学学报, 2015, 35(6):-220. doi: 10.16078/j.tribology.2015.06.009

[13]

马文林, 陆龙, 郭鸿儒, 王静波, 贾辉, 张树伟, 吕晋军. Fe-Mo-石墨和Fe-Mo-Ni-石墨的高温摩擦磨损行为[J]. 摩擦学学报, 2013, 33(5):-220.

[14]

. Ni-Cr-Mo-Al-Ti-B-MoS2系合金高温摩擦学特性的研究[J]. 摩擦学学报, 1999, 19(4):-220.

[15]

. MoS2/Ti复合薄膜对Ti811合金高温摩擦磨损性能及微动疲劳行为的影响[J]. 摩擦学学报, 2008, 28(3):-220.

[16]

乔旦, 王海忠, 冯大鹏. 磷酸酯胺盐离子液体作为钢/铜锡合金润滑剂的高温摩擦学性能研究[J]. 摩擦学学报, 2014, 34(1):-220.

[17]

海万秀, 曾俊菱, 任书芳, 孟军虎, 吕晋军. 有限氧化物粉末润滑下Ti3SiC2自配副在空气中的摩擦系数-温度特性[J]. 摩擦学学报, 2014, 34(3):-220.

[18]

. 铜石墨合金材料在载流条件下的摩擦磨损行为研究[J]. 摩擦学学报, 2008, 28(2):-220.

[19]

杨素兰, 王文珍, 马勤, 贾均红. Al元素对Ni基合金摩擦学性能的研究[J]. 摩擦学学报, 2017, 37(5):-220. doi: 10.16078/j.tribology.2017.05.014

[20]

屈盛官, 熊志华, 赖福强, 王光宏, 李小强, 邓继韶, 黎志彦. 等离子堆焊Stellite合金高温摩擦磨损特性研究[J]. 摩擦学学报, 2016, 36(3):-220. doi: 10.16078/j.tribology.2016.03.014

  • 计量
    • PDF下载量 (12)
    • 文章访问量 (128)
    • HTML全文浏览量 (40)
    • 引证文献数  (0)
    目录

    Figures And Tables

    温度对Cu-12.5Ni-5Sn-石墨自润滑复合材料摩擦学性能的影响

    王小超, 李珍, 陆龙, 杨正海, 王静波, 张永振