2019, 39(2):235-247. doi: 10.16078/j.tribology.2018133

计及轴颈倾斜的径向滑动轴承湍流润滑分析

1. 

合肥工业大学 汽车与交通工程学院,安徽 合肥 230009

2. 

合肥工业大学 机械工程学院,安徽 合肥 230009

3. 

合肥工业大学 仪器科学与光电工程学院,安徽 合肥 230009

4. 

潍柴动力股份有限公司,山东 潍坊 261001

通讯作者: 孙军, sunjun_hfut@163.com

收稿日期: 2018-09-12
录用日期: 2019-01-11
网络出版日期: 2019-03-28

Analysis of Turbulent Lubrication of Misaligned Journal Bearing

1. 

School of Automotive and Transportation Engineering, Hefei University of Technology, Anhui Hefei 230009, China

2. 

School of Mechanical Engineering, Hefei University of Technology, Anhui Hefei 230009, China

3. 

School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Anhui Hefei 230009, China

4. 

Weichai Power Company Limited, Shandong Weifang 261001, China

Corresponding author: Jun SUN, sunjun_hfut@163.com

Received Date: 12 Sep 2018
Accepted Date: 11 Jan 2019
Available Online: 28 Mar 2019

引用本文: 朱少禹, 孙军, 李彪, 刘广胜, 苗恩铭, 李云强, 朱桂香, 任燕平. 计及轴颈倾斜的径向滑动轴承湍流润滑分析[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018133.

Citation: Shaoyu ZHU, Jun SUN, Biao LI, Guangsheng LIU, Enming MIAO, Yunqiang LI, Guixiang ZHU and Yanping REN. Analysis of Turbulent Lubrication of Misaligned Journal Bearing[J]. TRIBOLOGY.

分析了轴颈倾斜状态下,径向滑动轴承的湍流润滑性能. 基于轴颈倾斜的统一Reynolds方程和能量方程,应用有限差分法求解了不同轴颈倾斜方位角、轴颈倾斜度、偏心率和平均雷诺数下的径向滑动轴承湍流润滑性能. 结果表明:轴颈倾斜方位角α=0°时,随着轴颈倾斜度的增大,轴承油膜的压力峰向轴承一端移动,轴承一端的轴向油膜温度梯度增大;α=90°时,随着轴颈倾斜度的增大,轴承油膜压力逐渐出现双峰分布,且向轴承两端移动,轴承两端的轴向温度梯度也不断增大. 在相同轴颈倾斜度增量下,轴承最大油膜压力、最高油膜温度、承载力和稳定工作力矩的增量随轴承中央截面偏心率的增大而增大. 相同轴颈倾斜度增量下,轴承最大油膜压力增量、最高油膜温度增量、承载力增量、摩擦系数减量和稳定工作力矩增量随平均雷诺数的增大而增大. 可见,径向滑动轴承湍流润滑分析中有必要考虑轴颈倾斜因素的影响.

关键词: 径向滑动轴承, 湍流, 润滑, 轴颈倾斜, 静态性能
[1]

吴宗泽, 高志. 机械设计[M]. 第2版. 北京:高等教育出版社, 2009: 60–94.

Wu Zongze, Gao Zhi. Mechanical design[M]. Second Edition. Beijing: Higher Education Press, 2009: 60–94(in Chinese).

[2]

温诗铸, 黄平. 摩擦学原理[M]. 第1版. 北京:清华大学出版社, 1990: 52–73.

Wen Shizhu, Huang Ping. Tribology principle[M]. First Edition. Beijing: Tsinghua University Press, 1990: 52–73(in Chinese).

[3]

张直明, 张言羊, 谢友柏, 等. 滑动轴承的流体动力润滑理论[M]. 北京: 高等教育出版社, 1986: 120–143.

Zhang Zhiming, Zhang Yanyang, Xie Youbai, et al. Hydrodynamic lubrication theory of plain bearings[M]. Beijing: Higher Education Press, 1986: 120–143(in Chinese).

[4]

Taylor C M, Dowson D. Turbulent lubrication theory-application to design[J]. Asme Journal of Tribology, 1974, 96(1): 36–46.

[5]

符江锋, 李昆, 李华聪, 等. 基于润滑特性仿真的燃油泵滑动轴承优化设计[J]. 摩擦学学报, 2018, 38(5): 512–520. doi: 10.16078/j.tribology.2018.05.003

Fu Jiangfeng, Li Kun, Li Huacong, et al. Optimization design of fuel pump sliding bearing based on the analysis of lubrication characteristics[J]. Tribology, 2018, 38(5): 512–520. doi: 10.16078/j.tribology.2018.05.003

[6]

宋智翔, 刘莹, 郭飞, 等. 屏蔽式核主泵水润滑可倾瓦推力轴承推力盘的离心效应[J]. 机械工程学报, 2018, 54(1): 127–135.

Song Zhixiang, Liu Ying, Guo Fei, et al. Influence of centrifugal deformation of thrust collar in water-lubricated tilting-pad thrust bearings of nuclear canned pump[J]. Journal of Mechanical Engineering, 2018, 54(1): 127–135.

[7]

Ji F, Guo Y, Yuan X Y, et al. Turbulent model analysis and experimental research for lubrication performance of large power units journal bearing[C]. In: 20094th IEEE Conference on Industrial Electronics and Applications, Xi’an, 2009: 206–210.

[8]

Shenoy B S, Pai R. Stability characteristics of an externally adjustable fluid film bearing in the laminar and turbulent regimes[J]. Tribology International, 2010, 43(9): 1751–1759. doi: 10.1016/j.triboint.2010.04.015

[9]

Sun J, Gui C L. Hydrodynamic lubrication analysis of journal bearing considering misalignment caused by shaft deformation[J]. Tribology International, 2004, 37(10): 841–848. doi: 10.1016/j.triboint.2004.05.007

[10]

Sun J, Gui C L, Li Z, et al. Influence of journal misalignment caused by shaft deformation under rotational load on performance of journal bearing[J]. Journal of Engineering Tribology, 2005, 219(4): 275–283.

[11]

Lv F, Rao Z, Na T, et al. Mixed-lubrication analysis of thin polymer film overplayed metallic marine stern bearing considering wall slip and journal misalignment[J]. Tribology International, 2017, 109: 390–397. doi: 10.1016/j.triboint.2017.01.008

[12]

Lv F, Jiao C, Na T, Rao Z, et al. Mixed-lubrication analysis of misaligned bearing considering turbulence[J]. Tribology International, 2018, 119: 19–26. doi: 10.1016/j.triboint.2017.10.030

[13]

Vijayaraghavan D, Keith T G. Analysis of a finite grooved misaligned journal bearing considering cavitation and starvation effects[J]. ASME Journal of Tribology, 1990, 112(1): 60–67. doi: 10.1115/1.2920231

[14]

Guha S K. Analysis of steady-state characteristics of misaligned hydrodynamic journal bearings with isotropic roughness effect[J]. Tribology International, 2000, 33(1): 1–12. doi: 10.1016/S0301-679X(00)00005-0

[15]

Mallya R, Shenoy S B, Pai R. Steady state characteristics of misaligned multiple axial groove water-lubricated journal bearing[J]. IMechE Part J: Journal of Engineering Tribology, 2015, 229(6): 712–722. doi: 10.1177/1350650114560833

[16]

孙军, 王震华, 桂长林, 等. 计及表面形貌的倾斜轴颈轴承弹性流体动力润滑分析[J]. 中国机械工程, 2008, 19(18): 2203–2208. doi: 10.3321/j.issn:1004-132X.2008.18.015

Sun Jun, Wang Zhenhua, Gui Changlin, et al. Elastohydrodynamics lubrication analysis of misaligned journal bearing considering surface roughness[J]. China Mechanical Engineering, 2008, 19(18): 2203–2208. doi: 10.3321/j.issn:1004-132X.2008.18.015

[17]

Constantinescu V N. On turbulent lubrication[J]. Proceedings of the Institution of Mechanical Engineers, 1959, 173(1): 881–900. doi: 10.1243/PIME_PROC_1959_173_068_02

[18]

Ng C W, Pan C H T. A linearized turbulent lubrication theory[J]. Journal of Fluids Engineering, 1965, 87(3): 675–682.

[19]

Elrod H G, Ng C W. A theory for turbulent fluid films and its application to bearings[J]. ASME Journal of Tribology, 1967, 1(3): 346–362.

[20]

Hirs G G. A bulk-flow theory for turbulence in lubricant films[J]. Asme Journal of Tribology, 1973, 95(2): 137–145.

[21]

Constantinescu V N. Basic relationships in turbulent lubrication and their extension to include thermal effects[J]. Journal of Lubrication Technology, 1973, 95(2): 147–154. doi: 10.1115/1.3451755

[22]

Sang M C. Thermohydrodynamic lubrication analysis of high-speed journal bearing considering variable density and variable specific heat[J]. Tribology International, 2004, 37(5): 405–413. doi: 10.1016/j.triboint.2003.12.009

[23]

Khonsari M M, Beaman J J. Thermohydrodynamic analysis of laminar incompressible journal bearings[J]. A S L E Transactions, 1986, 29(2): 141–150. doi: 10.1080/05698198608981671

[24]

Sang M C, Ha D H. Study on mixing flow effects in a high-speed journal bearing[J]. Tribology International, 2001, 34(6): 397–405. doi: 10.1016/S0301-679X(01)00030-5

[25]

Taylor C M. Turbulent lubrication theory applied to fluid film bearing design[J]. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 1969, 184(12): 40–47. doi: 10.1243/PIME_CONF_1969_184_368_02

[26]

Frene J, Arghir M, Constantinescu V. Combined thin-film and navier-stokes analysis in high Reynolds number lubrication[J]. Tribology International, 2006, 39(8): 734–747. doi: 10.1016/j.triboint.2005.07.004

[1]

郭瑞生, 魏强兵, 吴杨, 胡海豹, 周峰, 薛群基. 材料表面润湿性调控及减阻性能研究[J]. 摩擦学学报, 2015, 35(1):-247. doi: 10.16078/j.tribology.2015.01.004

[2]

孙军, 刘广胜, 许枫, 苗恩铭, 宋现浩, 舒磊, 朱黄龙, 徐志豪, 张正, 赵军伟. 进口润滑条件对活塞环-缸套摩擦副润滑性能的影响[J]. 摩擦学学报, 2015, 35(4):-247. doi: 10.16078/j.tribology.2015.04.010

[3]

. 平行运动的粗糙表面润滑承载性能研究[J]. 摩擦学学报, 2008, 28(2):-247.

[4]

刘金玉, 隋旭东, 张帅拓, 徐书生, 郝俊英. Ti过渡层对NbSe2薄膜润滑-导电性能的影响[J]. 摩擦学学报, 2018, 38(6):-247. doi: 10.16078/j.tribology.201800001

[5]

. 等离子喷涂Al2O3/TiO2陶瓷涂层在液态石蜡润滑下的摩擦磨损性能研究[J]. 摩擦学学报, 2009, 29(2):-247.

[6]

. 流体动压滑动轴承-转子系统非线性动力特性及稳定性[J]. 摩擦学学报, 2005, 25(1):-247.

[7]

. 磨合过程对流体润滑性能影响的数值分析数学模型[J]. 摩擦学学报, 1999, 19(2):-247.

[8]

. 基于可观测状态的轴承-转子系统周期解计算及稳定性分析[J]. 摩擦学学报, 2008, 28(3):-247.

[9]

. 高含水原油对油管和抽油杆摩擦磨损性能的影响研究[J]. 摩擦学学报, 2004, 24(2):-247.

[10]

. 颗粒流润滑的现状和展望[J]. 摩擦学学报, 2008, 28(6):-247.

[11]

. 润滑条件下激光加工纹理的摩擦磨损[J]. 摩擦学学报, 2009, 29(1):-247.

[12]

王伟, 刘小君, 刘焜. 颗粒流润滑过程中粉末层的微观破坏形式和机理分析[J]. 摩擦学学报, 2012, 32(3):-247.

[13]

向瑾, 孙桓五, 孙乃鑫, 孟爽. 不同速度及载荷作用下焦粉润滑特性的试验研究[J]. 摩擦学学报, 2018, 38(5):-247. doi: 10.16078/j.tribology.2018.05.011

[14]

. 内燃机气缸套失圆对活塞动压润滑和摩擦特性的影响[J]. 摩擦学学报, 2005, 25(3):-247.

[15]

徐涛, 左文杰, 徐天爽, 葛长江. 凹坑表面活塞与缸套挤压润滑油的流固耦合数值模拟[J]. 摩擦学学报, 2009, 29(4):-247.

[16]

曹磊, 孙航, 万勇, 杨淑燕, 徐铁伟. 全合成机油润滑下热氧化改性TC4钛合金的摩擦学行为[J]. 摩擦学学报, 2019, 39(1):-247. doi: 10.16078/j.tribology.2018122

[17]

周峰, 吴杨. “润滑”之新解[J]. 摩擦学学报, 2016, 36(1):-247. doi: 10.16078/j.tribology.2016.01.019

[18]

朱忠猛, 蒋晗. 第21届材料磨损国际会议的总结评述[J]. 摩擦学学报, 2017, 37(4):-247. doi: 10.16078/j.tribology.2017.04.019

[19]

. 材料的磨损失效及其预防研究现状与发展趋势[J]. 摩擦学学报, 1999, 19(2):-247.

[20]

王帅, 杨军. MAX相陶瓷摩擦学研究进展[J]. 摩擦学学报, 2018, 38(6):-247. doi: 10.16078/j.tribology.2018121

  • 计量
    • PDF下载量 (5)
    • 文章访问量 (129)
    • HTML全文浏览量 (47)
    • 引证文献数  (0)
    目录

    Figures And Tables

    计及轴颈倾斜的径向滑动轴承湍流润滑分析

    朱少禹, 孙军, 李彪, 刘广胜, 苗恩铭, 李云强, 朱桂香, 任燕平