2019, 39(4):511-522. doi: 10.16078/j.tribology.2019001

石墨烯掺杂的陶瓷和金属自润滑材料研究进展

陆军勤务学院 油料系,重庆 401311

通讯作者: 方建华, fangjianhua71225@sina.com

收稿日期: 2019-01-03
录用日期: 2019-04-24
网络出版日期: 2019-07-28

Research Progress on Graphene Doped Ceramic and Metal Self-lubricating Materials

Department of Oil, Army Logistics University, Chongqing 401311, China

Corresponding author: Jianhua FANG, fangjianhua71225@sina.com

Received Date: 03 Jan 2019
Accepted Date: 24 Apr 2019
Available Online: 28 Jul 2019

引用本文: 冯彦寒, 方建华, 吴江, 刘坪, 范兴钰, 王鑫, 姜自超. 石墨烯掺杂的陶瓷和金属自润滑材料研究进展[J]. 摩擦学学报. doi: 10.16078/j.tribology.2019001.

Citation: Yanhan FENG, Jianhua FANG, Jiang WU, Ping LIU, Xingyu FAN, Xin WANG and Zichao JIANG. Research Progress on Graphene Doped Ceramic and Metal Self-lubricating Materials[J]. TRIBOLOGY.

石墨烯(GN)具有独特的纳米层状结构,是一种性能优异的纳米润滑材料,在自润滑材料的研究领域获得了广泛的关注. 文章综述了掺杂石墨烯的陶瓷和金属自润滑材料的最新研究进展,重点探讨了石墨烯对材料力学和摩擦学性能的作用机理,以及石墨烯自身结构不同引起的性能差异,总结了掺杂石墨烯的陶瓷和金属材料的制备方法,简要介绍了各种制备方法的特点. 文章还对现有的研究成果进行总结分析,指出了当前研究中仍待解决的问题,为今后的研究工作提出了建议.

关键词: 石墨烯, 自润滑材料, 陶瓷, 金属, 烧结, 涂层, 粉末冶金
[1]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666–669. doi: 10.1126/science.1102896

[2]

蒲吉斌, 王立平, 薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J]. 摩擦学学报, 2014, 34(1): 93–112. doi: 10.16078/j.tribology.2014.01.014

Pu Jibin, Wang Liping, Xue Qunji. Progress of tribology of graphene and graphene-based composite lubricating materials[J]. Tribology, 2014, 34(1): 93–112. doi: 10.16078/j.tribology.2014.01.014

[3]

陈永胜, 黄毅.石墨烯: 新型二维碳纳米材料[M]. 北京: 科学出版社, 2015: 4-11.

Chen Yongsheng, Huang Yi. Graphene: A novel two-dimensional carbon nano material[M]. Beijing: Science Press, 2015: 4-11(in Chinese).

[4]

Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Graphene-based engine oil nanofluids for tribological applications[J]. Acs Applied Materials&Interfaces, 2011, 3(11): 4221–4227.

[5]

Lin J S, Wang L W, Chen G H. Modification of graphene platelets and their tribological properties as a lubricant additive[J]. Tribology Letters, 2011, 41(1): 209–215. doi: 10.1007/s11249-010-9702-5

[6]

Zhao J, Li Y R, Mao J Y, et al. Synthesis of thermally reduced graphite oxide in sulfuric acid and its application as an efficient lubrication additive[J]. Tribology International, 2017, 116: 303–309. doi: 10.1016/j.triboint.2017.06.023

[7]

Chen Y F, Bi J Q, Yin C L, et al. Microstructure and fracture toughness of graphene nanosheets/alumina composites[J]. Ceramics International, 2014, 40(9): 13883–13889. doi: 10.1016/j.ceramint.2014.05.107

[8]

Liu J, Yan H X, Jiang K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites[J]. Ceramics International, 2013, 39(6): 6215–6221. doi: 10.1016/j.ceramint.2013.01.041

[9]

El-Ghazaly A, Anis G, Salem H G. Effect of graphene addition on the mechanical and tribological behavior of nanostructured AA2124 self-lubricating metal matrix composite[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 325–336. doi: 10.1016/j.compositesa.2017.02.006

[10]

Ramirez C, Figueiredo F M, Miranzo P, et al. Graphene nanoplatelet/silicon nitride composites with high electrical conductivity[J]. Carbon, 2012, 50(10): 3607–3615. doi: 10.1016/j.carbon.2012.03.031

[11]

Wang J A, Cheng Y, Zhang Y, et al. Friction and wear behavior of microwave sintered Al2O3/TiC/GPLs ceramic sliding against bearing steel and their cutting performance in dry turning of hardened steel[J]. Ceramics International, 2017, 43(17): 14827–14835. doi: 10.1016/j.ceramint.2017.07.231

[12]

Li J F, Zhang L, Xiao J K, et al. Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3354–3362. doi: 10.1016/S1003-6326(15)63970-X

[13]

Chen X, Han Z, Lu K. Wear mechanism transition dominated by subsurface recrystallization structure in Cu–Al alloys[J]. Wear, 2014, 320: 41–50. doi: 10.1016/j.wear.2014.08.010

[14]

Yao B, Han Z, Lu K. Correlation between wear resistance and subsurface recrystallization structure in copper[J]. Wear, 2012, 294-295: 438–445. doi: 10.1016/j.wear.2012.07.008

[15]

Zhai W Z, Shi X L, Wang M, et al. Grain refinement: A mechanism for graphene nanoplatelets to reduce friction and wear of Ni3Al matrix self-lubricating composites[J]. Wear, 2014, 310: 33–40. doi: 10.1016/j.wear.2013.12.014

[16]

Zhai W Z, Shi X L, Yao J, et al. Investigation of mechanical and tribological behaviors of multilayer graphene reinforced Ni3Al matrix composites[J]. Composites Part B: Engineering, 2015, 70: 149–155. doi: 10.1016/j.compositesb.2014.10.052

[17]

Knieke C, Berger A, Voigt M, et al. Scalable production of graphene sheets by mechanical delamination[J]. Carbon, 2010, 48(11): 3196–3204. doi: 10.1016/j.carbon.2010.05.003

[18]

Balázsi C, Fogarassy Z, Tapasztó O, et al. Si3N4/graphene nanocomposites for tribological application in aqueous environments prepared by attritor milling and hot pressing[J]. Journal of the European Ceramic Society, 2017, 37(12): 3797–3804. doi: 10.1016/j.jeurceramsoc.2017.03.022

[19]

Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339–1339. doi: 10.1021/ja01539a017

[20]

Shen X J, Pei X Q, Fu S Y, et al. Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content[J]. Polymer, 2013, 54(3): 1234–1242. doi: 10.1016/j.polymer.2012.12.064

[21]

Wang J Z, Manga K K, Bao Q L, et al. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte[J]. Journal of the American Chemical Society, 2011, 133(23): 8888–8891. doi: 10.1021/ja203725d

[22]

Parvez K, Wu Z S, Li R J, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts[J]. Journal of the American Chemical Society, 2014, 136(16): 6083–6091. doi: 10.1021/ja5017156

[23]

Kim H J, Lee S M, Oh Y S, et al. Unoxidized graphene/alumina nanocomposite: fracture- and wear-resistance effects of graphene on alumina matrix[J]. Scientific Reports, 2014, 4: 1–10.

[24]

薛群基, 刘惠文. 陶瓷摩擦学I.陶瓷的摩擦与磨损[J]. 摩擦学学报, 1995, 15(4): 376–384. doi: 10.16078/j.tribology.1995.04.015

Xue Qunji, Liu Huiwen. Tribology of ceramics I. Friction and wear of ceramics[J]. Tribology, 1995, 15(4): 376–384. doi: 10.16078/j.tribology.1995.04.015

[25]

薛群基, 刘惠文. 陶瓷摩擦学II.陶瓷材料的润滑[J]. 摩擦学学报, 1996, 16(2): 184–190. doi: 10.3321/j.issn:1004-0595.1996.02.015

Xue Qunji, Liu Huiwen. Tribology of ceramics II. Lubrication of ceramics[J]. Tribology, 1996, 16(2): 184–190. doi: 10.3321/j.issn:1004-0595.1996.02.015

[26]

Munro M. Evaluated material properties for a sintered alpha-alumina[J]. Journal of the American Ceramic Society, 1997, 80(8): 1919–1928.

[27]

Porwal H, Grasso S, Reece M J. Review of graphene-ceramic matrix composites[J]. Advances in Applied Ceramics, 2015, 112(8): 443–454.

[28]

Tapasztó O, Tapasztó L, Markó M, et al. Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites[J]. Chemical Physics Letters, 2011, 511(4): 340–343.

[29]

Sedlák R, Koval?íková A, Balko J, et al. Effect of graphene platelets on tribological properties of boron carbide ceramic composites[J]. International Journal of Refractory Metals & Hard Materials, 2016, 65: 57–63.

[30]

Centeno A, Rocha V G, Alonso B, et al. Graphene for tough and electroconductive alumina ceramics[J]. Journal of the European Ceramic Society, 2013, 33(15): 3201–3210.

[31]

Gutierrez-Gonzalez C F, Smirnov A, Centeno A, et al. Wear behavior of graphene/alumina composite[J]. Ceramics International, 2015, 41(6): 7434–7438. doi: 10.1016/j.ceramint.2015.02.061

[32]

Belmonte M, Ramírez C, González-Julián J, et al. The beneficial effect of graphene nanofillers on the tribological performance of ceramics[J]. Carbon, 2013, 61(11): 431–435.

[33]

Llorente J, Román-Manso B, Miranzo P, et al. Tribological performance under dry sliding conditions of graphene/silicon carbide composites[J]. Journal of the European Ceramic Society, 2016, 36(3): 429–435. doi: 10.1016/j.jeurceramsoc.2015.09.040

[34]

Zhang W G, Liu W M, Wang C T. Tribological investigations of sol-gel ceramic films[J]. Science in China Series B: Chemistry, 2002, 45(1): 84–90. doi: 10.1360/02yb9012

[35]

Zhang W, Liu W, Wang C. Characterization and tribological investigation of sol-gel Al2O3 and doped Al2O3 films[J]. Journal of the European Ceramic Society, 2002, 22(16): 2869–2876. doi: 10.1016/S0955-2219(02)00063-8

[36]

Zhang W G, Wang C T, Liu W M. Characterization and tribological investigation of sol–gel ceramic films on Ti–6Al–4V[J]. Wear, 2006, 260(4): 379–386.

[37]

Zhang W G, Liu W M, Liu Y, et al. Tribological behaviors of single and dual sol–gel ceramic films on Ti–6Al–4V[J]. Ceramics International, 2009, 35(4): 1513–1520. doi: 10.1016/j.ceramint.2008.08.009

[38]

Piwoński I, Soliwoda K. The effect of ceramic nanoparticles on tribological properties of alumina sol–gel thin coatings[J]. Ceramics International, 2010, 36(1): 47–54. doi: 10.1016/j.ceramint.2009.06.024

[39]

Lee B, Koo M Y, Jin S H, et al. Simultaneous strengthening and toughening of reduced graphene oxide/alumina composites fabricated by molecular-level mixing process[J]. Carbon, 2014, 78: 212–219. doi: 10.1016/j.carbon.2014.06.074

[40]

方燕洁, 白涛. 石墨烯/TiO2陶瓷薄膜的制备及其摩擦学性能研究[J]. 摩擦学学报, 2017, 37(3): 297–304.

Fang Yanjie, Bai Tao. Preparation and tribological properties of graphene/TiO2 ceramic films[J]. Tribology, 2017, 37(3): 297–304.

[41]

Chaim R, Levin M, Shlayer A, et al. Sintering and densification of nanocrystalline ceramic oxide powders: a review[J]. British Ceramic Transactions, 2015, 107(3): 159–169.

[42]

Hvizdo? P, Dusza J, Balázsi C. Tribological properties of Si3N4-graphene nanocomposites[J]. Journal of the European Ceramic Society, 2013, 33(12): 2359–2364. doi: 10.1016/j.jeurceramsoc.2013.03.035

[43]

Liu Y, Ai Y L, He W, et al. Grain growth kinetics in microwave sintered graphene platelets reinforced ZrO2/Al2O3 composites[J]. Ceramics International, 2018, 44(14): 16421–16427. doi: 10.1016/j.ceramint.2018.06.053

[44]

Rutkowski P, Stobierski L, Zientara D, et al. The influence of the graphene additive on mechanical properties and wear of hot-pressed Si3N4 matrix composites[J]. Journal of the European Ceramic Society, 2015, 35(1): 87–94. doi: 10.1016/j.jeurceramsoc.2014.08.004

[45]

Balko J, Hvizdo? P, Dusza J, et al. Wear damage of Si3N4-graphene nanocomposites at room and elevated temperatures[J]. Journal of the European Ceramic Society, 2014, 34(14): 3309–3317. doi: 10.1016/j.jeurceramsoc.2014.02.025

[46]

Liu J, Yan H, Reece M J, et al. Toughening of zirconia/alumina composites by the addition of graphene platelets[J]. Journal of the European Ceramic Society, 2012, 32(16): 4185–4193. doi: 10.1016/j.jeurceramsoc.2012.07.007

[47]

Wang X J, Lu M Y, Qiu L, et al. Graphene/titanium carbide composites prepared by sol–gel infiltration and spark plasma sintering[J]. Ceramics International, 2016, 42(1): 122–131. doi: 10.1016/j.ceramint.2015.08.017

[48]

Wozniak J, Cygan T, Petrus M, et al. Tribological performance of alumina matrix composites reinforced with nickel-coated graphene[J]. Ceramics International, 2018, 44(8): 9728–9732. doi: 10.1016/j.ceramint.2018.02.204

[49]

Li H Q, Xie Y T, Li K, et al. Microstructure and wear behavior of graphene nanosheets-reinforced zirconia coating[J]. Ceramics International, 2014, 40(8): 12821–12829. doi: 10.1016/j.ceramint.2014.04.136

[50]

Chen F, Zhang Y L, Zhang Y. Effect of graphene on micro-structure and properties of MAO coating prepared on Mg-Li alloy[J]. International Journal of Electrochemical Science, 2017, 12(7): 6081–6091.

[51]

Lei Y, Jiang J L, Bi T T, et al. Effect of counterparts and applied load on the tribological behavior of the graphene–nickel matrix self-lubricating composite[J]. Tribology Letters, 2018, 66(4): 129–138. doi: 10.1007/s11249-018-1084-0

[52]

邹高鹏, 贺显聪, 孙滨洲, 等. 微纳石墨烯片增强铝合金的力学性能及其机理[J]. 中国有色金属学报, 2017, 27(11): 2228–2235.

Zou Gaopeng, He Xiancong, Sun Binzhou, et al. Mechanics performances and mechanism of aluminum alloy reinforced by graphene nanosheets[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(11): 2228–2235.

[53]

Tabandeh-Khorshid M, Omrani E, Menezes P L, et al. Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets[J]. Engineering Science and Technology, an International Journal, 2016, 19(1): 463–469. doi: 10.1016/j.jestch.2015.09.005

[54]

Yang K, Shi X L, Zhai W Z, et al. Tribological behavior of TiAl matrix self-lubricating composites reinforced by multilayer graphene[J]. RSC Advances, 2015, 5(55): 44618–44625. doi: 10.1039/C5RA03852A

[55]

Huang Y C, Xue B, Shi X L, et al. Study on tribological performance of NiAl matrix self-lubricating composites containing graphene at different loads[J]. Tribology Transactions, 2017, 60(6): 1043–1052. doi: 10.1080/10402004.2016.1245455

[56]

Zou J L, Shi X L, Shen Q, et al. Dry sliding wear of TiAl-graphene-silver composite at elevated temperatures[J]. Journal of Materials Engineering and Performance, 2017, 26(9): 4615–4625. doi: 10.1007/s11665-017-2873-6

[57]

Xu Z S, Zhang Q X, Shi X L, et al. Tribological properties of TiAl matrix self-lubricating composites containing multilayer graphene and Ti3SiC2 at High Temperatures[J]. Tribology Transactions, 2015, 58(6): 1131–1141. doi: 10.1080/10402004.2015.1046007

[58]

Xu Z S, Zhang Q X, Jing P X, et al. High-temperature tribological performance of TiAl matrix composites reinforced by multilayer graphene[J]. Tribology Letters, 2015, 58(3): 1–9.

[59]

Xu Z S, Shi X L, Zhai W Z, et al. Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene[J]. Carbon, 2014, 67(2): 168–177.

[60]

Yao J, Shi X L, Zhai W Z, et al. The enhanced tribological properties of NiAl intermetallics: Combined lubrication of multilayer graphene and WS2[J]. Tribology Letters, 2014, 56(3): 573–582. doi: 10.1007/s11249-014-0439-4

[61]

Mukherjee B, Kumar R, Islam A, et al. Evaluation of strength-ductility combination by in-situ tensile testing of graphene nano platelets reinforced shroud plasma sprayed nickel-aluminium coating[J]. Journal of Alloys & Compounds, 2018, 765: 1082–1089.

[62]

Tian H L, Guo M Q, Wang C L, et al. Tribological behaviour of a self-lubricated GO/WC–12Co thermal spray coating[J]. Surface Engineering, 2017, 34(10): 762–770.

[63]

Chen J J, Li J L, Xiong D S, et al. Preparation and tribological behavior of Ni-graphene composite coating under room temperature[J]. Applied Surface Science, 2016, 361(1): 49–56.

[64]

Sahu S C, Samantara A K, Seth M, et al. A facile electrochemical approach for development of highly corrosion protective coatings using graphene nanosheets[J]. Electrochemistry Communications, 2013, 32: 22–26. doi: 10.1016/j.elecom.2013.03.032

[65]

Mai Y J, Ling H J, Chen F X, et al. Electrochemically reduced graphene oxide nanosheet coatings as solid lubricants in humid air[J]. Materials Research Bulletin, 2018, 102: 324–329. doi: 10.1016/j.materresbull.2018.02.035

[66]

Qi S J, Li X Y, Dong H S. Improving the macro-scale tribology of monolayer graphene oxide coating on stainless steel by a silane bonding layer[J]. Materials Letters, 2017, 209: 15–18. doi: 10.1016/j.matlet.2017.07.087

[67]

Li P F, Zhou H, Cheng X H. Investigation of a hydrothermal reduced graphene oxide nano coating on Ti substrate and its nano-tribological behavior[J]. Surface&Coatings Technology, 2014, 254: 298–304.

[1]

王奇, 姚萍屏, 周海滨, 贡太敏, 樊坤阳, 凌攀, 李昆. 含Cr铜基粉末冶金摩擦材料的磨损图研究[J]. 摩擦学学报, 2017, 37(3):-522. doi: 10.16078/j.tribology.2017.03.012

[2]

韩明, 杜建华, 宁克焱, 许成法. 湿式铜基粉末冶金摩擦材料黏着损伤研究[J]. 摩擦学学报, 2014, 34(6):-522.

[3]

. 刹车条件对铁基粉末冶金材料摩擦磨损性能的影响[J]. 摩擦学学报, 2007, 27(4):-522.

[4]

蒲吉斌, 王立平, 薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J]. 摩擦学学报, 2014, 34(1):-522.

[5]

刘栓, 姜欣, 赵海超, 顾林, 王永欣, 李金龙, 余海斌, 陈建敏. 石墨烯环氧涂层的耐磨耐蚀性能研究[J]. 摩擦学学报, 2015, 35(5):-522. doi: 10.16078/j.tribology.2015.05.012

[6]

. 微孔贯通型高温自润滑金属陶瓷的摩擦磨损性能研究[J]. 摩擦学学报, 2006, 26(4):-522.

[7]

方燕洁, 白涛. 石墨烯/TiO2陶瓷薄膜的制备及其摩擦学性能研究[J]. 摩擦学学报, 2017, 37(3):-522. doi: 10.16078/j.tribology.2017.03.003

[8]

陕钰, 刘峰, 汪建义, 王文珍, 贾均红. NiCrW-Al2O3-SrCO3-Ag金属陶瓷复合材料的高温摩擦学性能研究[J]. 摩擦学学报, 2015, 35(6):-522. doi: 10.16078/j.tribology.2015.06.009

[9]

李锋, 薄路铖, 陈景福, 郭红, 张桂林, 王成焘. 关节软骨与髋关节陶瓷材料往复旋转运动摩擦行为研究[J]. 摩擦学学报, 2018, 38(2):-522. doi: 10.16078/j.tribology.2018.02.004

[10]

. 等离子喷涂Al2O3/TiO2陶瓷涂层在液态石蜡润滑下的摩擦磨损性能研究[J]. 摩擦学学报, 2009, 29(2):-522.

[11]

. 等离子熔敷Cr7C3金属陶瓷增强复合涂层组织与耐磨性研究[J]. 摩擦学学报, 2006, 26(3):-522.

[12]

王小超, 李珍, 陆龙, 杨正海, 王静波, 张永振. 温度对Cu-12.5Ni-5Sn-石墨自润滑复合材料摩擦学性能的影响[J]. 摩擦学学报, 2019, 39(2):-522. doi: 10.16078/j.tribology.2018117

[13]

. 铜石墨合金材料在载流条件下的摩擦磨损行为研究[J]. 摩擦学学报, 2008, 28(2):-522.

[14]

孙洋, 李文生, 胡伟, 杨军, 朱圣宇, 范祥娟. 镍基自润滑涂层的摩擦学性能[J]. 摩擦学学报, 2018, 38(5):-522. doi: 10.16078/j.tribology.2018.05.009

[15]

. 超声马达梯度涂层摩擦材料研究[J]. 摩擦学学报, 2009, 29(1):-522.

[16]

段文博, 孙岩桦, 丁春华, 耿海鹏, 戚社苗, 虞烈. 滑动速度对IS304涂层自润滑磨损机理的影响[J]. 摩擦学学报, 2015, 35(2):-522. doi: 10.16078/j.tribology.2015.02.004

[17]

. 纳米Al2O3填充端异氰酸酯基聚丁二烯橡胶-环氧树脂复合涂层的干滑动摩擦磨损性能研究[J]. 摩擦学学报, 2006, 26(4):-522.

[18]

程江波, 梁秀兵, 王泽华, 徐滨士. 油润滑条件下FeBSiNb非晶涂层磨损性能研究[J]. 摩擦学学报, 2012, 32(2):-522.

[19]

黄哲伟, 吉喆, 陈苏琳, 张执南, 沈彬. 石墨烯在金刚石基体表面的纳米摩擦学行为研究[J]. 摩擦学学报, 2019, 39(2):-522. doi: 10.16078/j.tribology.2018134

[20]

. 高温固体润滑研究的现状及发展趋势[J]. 摩擦学学报, 1999, 19(1):-522.

  • 计量
    • PDF下载量 (6)
    • 文章访问量 (309)
    • HTML全文浏览量 (80)
    • 引证文献数? (0)
    目录

    Figures And Tables

    石墨烯掺杂的陶瓷和金属自润滑材料研究进展

    冯彦寒, 方建华, 吴江, 刘坪, 范兴钰, 王鑫, 姜自超