2019, 39(4):387-395. doi: 10.16078/j.tribology.2019069

聚多巴胺辅助两性离子聚合物界面组装制备水润滑纳米涂层

1.?

西北师范大学化学化工学院 生态环境相关高分子材料教育部重点实验室 甘肃省高分子材料重点实验室,甘肃 兰州 730070

2.?

万博manbetⅹapp_万博app怎么提钱太黑了_万博体育app3.0 苹果 固体润滑国家重点实验室,甘肃 兰州 730000

通讯作者: 魏强兵, weiqiangbing@nwnu.edu.cn周峰, zhouf@licp.cas.cn

收稿日期: 2019-04-17
录用日期: 2019-05-23
网络出版日期: 2019-07-28

Polydopamine Assisted Co-Assembly for Fabrication of Zwitterionic Polymer Nanocoating with Efficient Aqueous Lubrication

1.?

Key Laboratory of Eco-Environmental-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu Lanzhou 730070, China

2.?

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu Lanzhou 730000, China

Corresponding author: Qiangbing WEI, weiqiangbing@nwnu.edu.cnFeng ZHOU, zhouf@licp.cas.cn

Received Date: 17 Apr 2019
Accepted Date: 23 May 2019
Available Online: 28 Jul 2019

引用本文: 魏强兵, 岳芹宇, 李乐乐, 付甜, 麻拴红, 周峰. 聚多巴胺辅助两性离子聚合物界面组装制备水润滑纳米涂层[J]. 摩擦学学报. doi: 10.16078/j.tribology.2019069.

Citation: Qiangbing WEI, Qinyu YUE, Lele LI, Tian FU, Shuanhong MA and Feng ZHOU. Polydopamine Assisted Co-Assembly for Fabrication of Zwitterionic Polymer Nanocoating with Efficient Aqueous Lubrication[J]. TRIBOLOGY.

亲水和低摩擦表面涂层在生物植入体及医疗器械方面有着很广泛的应用,为发展简单、通用的涂层制备方法,本文作者采用聚多巴胺辅助共沉积技术,将壳聚糖基两性离子共聚物组装到材料表面,制备了超亲水、低摩擦和抗污染水润滑纳米涂层,考察了聚合物浓度对共沉积复合涂层的厚度、亲水性和润滑性的影响. 结果表明:随着聚合物浓度的增大,涂层厚度略有下降;该涂层在纯水及不同生物介质中表现出优异的润滑性能(摩擦系数μ为0.015)和抗污染性能. 该方法适用于多种惰性材料表面(金属、陶瓷和聚合物等),有望用于生物植入体、医用导管等表面制备多功能水润滑纳米涂层.

关键词: 聚多巴胺, 两性离子聚合物, 表面改性, 水润滑, 低摩擦涂层
[1]

Lamprou D, Scoutaris N, Ross S, et al. Polymeric coatings and their fabrication for medical devices. In Encyclopedia of Biomedical Engineering[M]. Oxford: Elsevier, 2019: 177-187..

[2]

Albers P T M, Govers S P W, Laven J, et al. Design of dual hydrophobic–hydrophilic polymer networks for highly lubricious polyether-urethane coatings[J]. European Polymer Journal, 2019, 111: 82–94. doi: 10.1016/j.eurpolymj.2018.12.004

[3]

van Bochove B, Rongen J J, Hannink G, et al. Grafting a lubricious coating onto photo-crosslinked poly (trimethylene carbonate)[J]. Polymers for Advanced Technologies, 2015, 26(12): 1428–1432. doi: 10.1002/pat.3613

[4]

McCutchen C W. The frictional properties of animal joints[J]. Wear, 1962, 5(1): 1–17. doi: 10.1016/0043-1648(62)90176-X

[5]

Neville A, Morina A, Liskiewicz T, et al. Synovial joint lubrication-does nature teach more effective engineering lubrication strategies[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2007, 221(10): 1223–1230. doi: 10.1243/09544062JMES724

[6]

Jahn S, Seror J, Klein J. Lubrication of articular cartilage[J]. Annual Review of Biomedical Engineering, 2016, 18: 235–258. doi: 10.1146/annurev-bioeng-081514-123305

[7]

刘国强, 郭文清, 刘志鲁, 等. 聚合物仿生润滑剂研究进展[J]. 摩擦学学报, 2015, 35(1): 108–120. doi: 10.16078/j.tribology.2015.01.016

Liu Guoqiang, Guo Wenqing, Liu Zhilu, et al. Research progress on polymer-based biomimetic lubricants[J]. Tribology, 2015, 35(1): 108–120. doi: 10.16078/j.tribology.2015.01.016

[8]

Morgese G, Benetti E M, Zenobi Wong M. Molecularly engineered biolubricants for articular cartilage[J]. Advanced Healthcare Materials, 2018, 7(16): 1701463. doi: 10.1002/adhm.v7.16

[9]

Singh A, Corvelli M, Unterman S A, et al. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid[J]. Nature Materials, 2014, 13(10): 988–995. doi: 10.1038/nmat4048

[10]

Sterner O, Karageorgaki C, Zürcher M, et al. Reducing friction in the eye: a comparative study of lubrication by surface-anchored synthetic and natural ocular mucin analogues[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 20150–20160. doi: 10.1021/acsami.6b16425

[11]

魏强兵, 蔡美荣, 周峰. 表面接枝聚合物刷与仿生水润滑研究进展[J]. 高分子学报, 2012, 10: 1102–1107. doi: 10.3724/SP.J.1105.2012.12127

Wei Qiangbing, Cai Meirong, Zhou Feng. Progress on surface grafted polymer brushes for biomimetic lubrication[J]. Acta Polymerica Sinica, 2012, 10: 1102–1107. doi: 10.3724/SP.J.1105.2012.12127

[12]

Wei Q, Pei X, Hao J, et al. Surface modification of diamond‐like carbon film with polymer brushes using a bio‐inspired catechol anchor for excellent biological lubrication[J]. Advanced Materials Interfaces, 2014, 1(5): 1400035. doi: 10.1002/admi.201400035

[13]

Chen M, Briscoe W H, Armes S P, et al. Polyzwitterionic brushes: Extreme lubrication by design[J]. European Polymer Journal, 2011, 47(4): 511–523. doi: 10.1016/j.eurpolymj.2010.10.007

[14]

Banquy X, Burdyńska J, Lee D W, et al. Bioinspired bottle-brush polymer exhibits low friction and Amontons-like behavior[J]. Journal of the American Chemical Society, 2014, 136(17): 6199–6202. doi: 10.1021/ja501770y

[15]

Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426–430. doi: 10.1126/science.1147241

[16]

Ryu J H, Messersmith P B, Lee H. Polydopamine surface chemistry: a decade of discovery[J]. ACS Applied Materials & Interfaces, 2018, 10(9): 7523–7540. doi: 10.1021/acsami.7b19865

[17]

Barclay T G, Hegab H M, Clarke S R, et al. Versatile surface modification using polydopamine and related polycatecholamines: Chemistry, structure, and applications[J]. Advanced Materials Interfaces, 2017, 4(19): 1601192. doi: 10.1002/admi.201601192

[18]

Zhang Y, Thingholm B, Goldie K N, et al. Assembly of poly (dopamine) films mixed with a nonionic polymer[J]. Langmuir, 2012, 28(51): 17585–17592. doi: 10.1021/la304080c

[19]

Qiu W Z, Yang H C, Xu Z K. Dopamine-assisted co-deposition: An emerging and promising strategy for surface modification[J]. Advances in Colloid and Interface Science, 2018, 256: 111–125. doi: 10.1016/j.cis.2018.04.011

[20]

Ma M Q, Zhang C, Chen T T, et al. Bioinspired polydopamine/polyzwitterion coatings for underwater anti-oil and-freezing surfaces[J]. Langmuir, 2018, 35(5): 1895–1901. doi: 10.1021/acs.langmuir.8b02320

[21]

Han L, Xiang L, Zhang J, et al. Biomimetic lubrication and surface interactions of dopamine-assisted zwitterionic polyelectrolyte coatings[J]. Langmuir, 2018, 34(38): 11593–11601. doi: 10.1021/acs.langmuir.8b02473

[22]

Ye H, Xia Y, Liu Z, et al. Dopamine-assisted deposition and zwitteration of hyaluronic acid for the nanoscale fabrication of low-fouling surfaces[J]. Journal of Materials Chemistry B, 2016, 4(23): 4084–4091. doi: 10.1039/C6TB01022A

[23]

Hall-Edgefield D L, Shi T, Nguyen K, et al. Hybrid molecular brushes with chitosan backbone: facile synthesis and surface grafting[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22026–22033. doi: 10.1021/am5051026

[24]

Mei Y, Yu K, Lo J C Y, et al. Polymer–nanoparticle interaction as a design principle in the development of a durable ultrathin universal binary antibiofilm coating with long-term activity[J]. ACS Nano, 2018, 12(12): 11881–11891. doi: 10.1021/acsnano.8b05512

[25]

Lv Y, Yang S J, Du Y, et al. Co-deposition kinetics of polydopamine/polyethyleneimine coatings: Effects of solution composition and substrate surface[J]. Langmuir, 2018, 34(44): 13123–13131. doi: 10.1021/acs.langmuir.8b02454

[26]

Jahn S, Klein J. Hydration lubrication: the macromolecular domain[J]. Macromolecules, 2015, 48(15): 5059–5075. doi: 10.1021/acs.macromol.5b00327

[27]

Chen M, Briscoe W H, Armes S P, et al. Lubrication at physiological pressures by polyzwitterionic brushes[J]. Science, 2009, 323(5922): 1698–1701. doi: 10.1126/science.1169399

[28]

Wei Q, Cai M, Zhou F, et al. Dramatically tuning friction using responsive polyelectrolyte brushes[J]. Macromolecules, 2013, 46(23): 9368–9379. doi: 10.1021/ma401537j

[29]

Jiang S, Cao Z. Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications[J]. Advanced Materials, 2010, 22(9): 920–932. doi: 10.1002/adma.200901407

[1]

. 聚合物复合薄膜改性橡胶表面结构及其摩擦性能研究[J]. 摩擦学学报, 2007, 27(2):-395.

[2]

胡伟炜, 赵文杰, 曹慧军, 曾志翔, 张昕, 乌学东. 多巴胺改性UHMWPE粉末对环氧涂层韧性及摩擦性能的影响[J]. 摩擦学学报, 2012, 32(5):-395.

[3]

眭剑, 吕晋军. 碳化物衍生碳涂层/氮化硅摩擦副在水润滑下的摩擦学性能[J]. 摩擦学学报, 2011, 31(5):-395.

[4]

徐鹏飞, 周飞, 王谦之, 彭约钧, 陈建宁, 云乃彰. 网纹型表面微结构对Ti-6Al-4V水润滑摩擦学特性的影响[J]. 摩擦学学报, 2012, 32(4):-395.

[5]

. 氮离子注入Cr2O3涂层的磨损性能研究[J]. 摩擦学学报, 2006, 26(5):-395.

[6]

唐群国, 陈晶申, 金文浩. 氧化锆陶瓷/碳纤增强聚醚醚酮在水润滑下的摩擦磨损特性研究[J]. 摩擦学学报, 2010, 30(6):-395.

[7]

. 干摩擦和水润滑条件下芳纶浆粕/环氧树脂复合材料摩擦磨损性能研究[J]. 摩擦学学报, 2006, 26(4):-395.

[8]

. 填充聚四氟乙烯复合材料在水润滑条件下的摩擦磨损特性研究[J]. 摩擦学学报, 2007, 27(3):-395.

[9]

刘国强, 郭文清, 刘志鲁, 蔡美荣, 王晓龙. 聚合物仿生润滑剂研究进展[J]. 摩擦学学报, 2015, 35(1):-395. doi: 10.16078/j.tribology.2015.01.016

[10]

. 火焰喷涂聚苯硫醚(PPS)复合涂层在水环境中的摩擦磨损性能研究[J]. 摩擦学学报, 2005, 25(5):-395.

[11]

密永娟, 杨志刚, 王赵锋, 王金清, 杨生荣. ZrO2/rGO多层复合薄膜的构筑及其摩擦学性能研究[J]. 摩擦学学报, 2014, 34(5):-395.

[12]

. 二硫化钼改性热塑性聚酰亚胺复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2005, 25(5):-395.

[13]

王秋凤, 王鸿灵, 王云霞, 阎逢元. 表面粗糙度对UHMWPE微动摩擦磨损性能的影响[J]. 摩擦学学报, 2015, 35(4):-395. doi: 10.16078/j.tribology.2015.04.012

[14]

关晓艳, 王永欣, 王立平, 薛群基. 非晶碳基薄膜材料水环境摩擦学研究进展[J]. 摩擦学学报, 2017, 37(2):-395. doi: 10.16078/j.tribology.2017.02.018

[15]

王占朝, 刘莹, 郭飞, 刘向锋, 王玉明. 支点变形对水润滑可倾瓦推力轴承起动过程影响[J]. 摩擦学学报, 2018, 38(2):-395. doi: 10.16078/j.tribology.2018.02.008

[16]

吴行阳, 邓兆星, 黄一鸣, 华子恺, 张建华. 基于多功率源梯度过渡层的Si-DLC的制备及水润滑性能研究[J]. 摩擦学学报, 2014, 34(6):-395.

[17]

. 水润滑高速动静压轴承试验研究[J]. 摩擦学学报, 2006, 26(3):-395.

[18]

. 微机电系统磨损特性研究进展[J]. 摩擦学学报, 2005, 25(5):-395.

[19]

刘 静, 钱林茂, 董汉山, JosephBuhagiar. 碳化?氮化与碳氮化对316LVM不锈钢微动腐蚀磨损性能的影响[J]. 摩擦学学报, 2009, 29(5):-395.

[20]

陈丽, 张俊彦. 环氧改性的单晶硅表面聚合物薄膜的摩擦学特性研究[J]. 摩擦学学报, 2011, 31(6):-395.

  • 计量
    • PDF下载量 (30)
    • 文章访问量 (370)
    • HTML全文浏览量 (93)
    • 引证文献数? (0)
    目录

    Figures And Tables

    聚多巴胺辅助两性离子聚合物界面组装制备水润滑纳米涂层

    魏强兵, 岳芹宇, 李乐乐, 付甜, 麻拴红, 周峰