2019, 39(4):444-451. doi: 10.16078/j.tribology.2018175

硅基底复合自组装膜的制备及其微摩擦磨损性能研究

中国矿业大学 机电工程学院,江苏 徐州 221116

通讯作者: 刘同冈, nano@cumt.edu.cn

收稿日期: 2018-11-19
录用日期: 2019-03-05
网络出版日期: 2019-07-28

Preparation and Microtribological Properties of Self-assembling Composite Films on Silicon Substrate

School of Mechatronic Engineering, China University of Mining and Technology, Jiangsu Xuzhou 221116, China

Corresponding author: Tonggang LIU, nano@cumt.edu.cn

Received Date: 19 Nov 2018
Accepted Date: 05 Mar 2019
Available Online: 28 Jul 2019

引用本文: 刘同冈, 游坤, 赵康康, 查塔尔. 硅基底复合自组装膜的制备及其微摩擦磨损性能研究[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018175.

Citation: Tonggang LIU, Kun YOU, Kangkang ZHAO and Chhattal Muhammad. Preparation and Microtribological Properties of Self-assembling Composite Films on Silicon Substrate[J]. TRIBOLOGY.

采用共吸附法,在硅基底表面制备3-氨基丙基三乙氧基硅烷(APS)和十二烷基三甲氧基硅烷(WD-10)复合自组装膜. 通过分子动力学模拟不同温度与混合分子在不同比例下的混合体系界面结合能;依据模拟结果,采用正交试验法设计试验方案制备9种不同条件下的自组装膜;采用原子力显微镜、接触角测定仪以及X射线光电子能谱仪对自组装膜的表面形貌、湿润性能和化学成分进行表征分析;利用微摩擦测试仪对自组装膜的微摩擦磨损性能进行性能测试. 结果表明:混合分子成功组装到羟基化硅基底表面,并且当组装温度为25 ℃,组装时间为4 h,组装溶液的pH为6时,自组装膜的质量较好;制备的复合自组装膜由于引起了边界润滑效应,有效减小了试件表面的摩擦磨损,且两种混合分子比例为1:1时自组装膜的减摩特性最佳.

关键词: 共吸附法, 硅基底, 复合自组装膜, 微摩擦磨损性能, 边界润滑效应
[1]

Xu-Hui Li. Status of development and application of MEMS technology[J]. Transducer & Microsystem Technologies, 2006, 25(5): 7–9.

[2]

Zhang W, Zhang D C, Wang Y Y. Survey and development of MEMS[J]. Semiconductor Information, 2002, 119(1-3): 107–115.

[3]

Mohamed Gad-el-Hak. 微机电系统基础 (赵永梅, 段瑞飞, 季安译)[M]. 北京: 机械工业出版社, 2017.

Mohamed Gad-el-Hak. Foundation of MEMS (Zhao Yongmei,Duan Ruifei,Ji An translation)[M]. Beijing: Machinery Industry Press, 2017(in Chinese).

[4]

陈勇华. 微机电系统的研究与展望[J]. 电子机械工程, 2011, 27(3): 1–7. doi: 10.3969/j.issn.1008-5300.2011.03.001

Chen Yonghua. Research and prospect of MEMS[J]. Electronic Mechanical Engineering, 2011, 27(3): 1–7. doi: 10.3969/j.issn.1008-5300.2011.03.001

[5]

严宇才, 张端. 微机电系统技术的研究现状和展望[J]. 电子工业专用设备, 2011, 40(4): 1–8. doi: 10.3969/j.issn.1004-4507.2011.04.001

Yan Yucai, Zhang Duan. Research status and prospect of micro-electro-mechanical system technology[J]. Special Equipment for Electronics Industry, 2011, 40(4): 1–8. doi: 10.3969/j.issn.1004-4507.2011.04.001

[6]

雒建斌, 何雨, 温诗铸, 等. 微/纳米制造技术的摩擦学挑战[J]. 摩擦学学报, 2005, 25(3): 283–288. doi: 10.3321/j.issn:1004-0595.2005.03.020

Luo Jianbin, He Yu, Wen Shizhu, et al. Challenges to tribology arisen from the development of micro- and nano-manufacturing technology[J]. Tribology, 2005, 25(3): 283–288. doi: 10.3321/j.issn:1004-0595.2005.03.020

[7]

Komvopoulos K. Surface engineering and microtribology for microelectromechanical systems[J]. Wear, 1996, 200(1-2): 305–327. doi: 10.1016/S0043-1648(96)07328-0

[8]

Bhushan B, Kulkarni A V, Boehm M, et al. Microtribological characterization of self-assembled and langmuir-blodgett monolayers by atomic and friction force microscopy[J]. Langmuir, 1995, 11(8): 3189–3198. doi: 10.1021/la00008a052

[9]

Kang Z, Liu Q, Liu Y. Preparation and micro-tribological property of hydrophilic self-assembled monolayer on single crystal silicon surface[J]. Wear, 2013, 303(1-2): 297–301. doi: 10.1016/j.wear.2013.03.026

[10]

柴智敏. 原子层沉积薄膜摩擦特性研究[D]. 北京: 清华大学, 2014.

Chai Zhimin. Tribology study of atomic layer deposited films[D]. Beijing: Tsinghua University, 2014(in Chinese).

[11]

Liu Q, hang Z X. Preparation and micro-tribological property of hydrophobic organic films on the surface of Mg-Mn-Ce magnesium alloy[J]. Progress in Organic Coatings, 2015, 84: 42–49. doi: 10.1016/j.porgcoat.2015.02.015

[12]

吴健. 硅基MEMS器件的液体润滑及纳米磁性液体磁控润滑研究[D]. 徐州: 中国矿业大学, 2015.

Wu Jian. Study on the lubrication of MEMS device by liquid and magnetic field controlled ferrofluid[D]. Xuzhou: China University of Mining and Technology, 2015(in Chinese).

[13]

Houston J E, Doelling C M, Vanderlick T K, et al. Comparative study of the adhesion, friction, and mechanical properties of CF3- and CH3-terminated alkanethiol monolayers[J]. Langmuir, 2002, 35(7): 3926–3932. doi: 10.1002/chin.200236290

[14]

崔宝凤, 周惠娣, 张俊彦, 等. 聚酰胺胺类树枝形聚合物(PAMAM)插入式自组装膜的制备与摩擦学性能: 小分子链长的影响[J]. 摩擦学学报, 2011, 31(1): 1–6. doi: 10.16078/j.tribology.2011.01.001

Cui Baofeng, Zhou Huidi, Zhang Junyan, et al. Preparation and tribological properties of inserted PAMAMS SAMs: influence of chain length[J]. Tribology, 2011, 31(1): 1–6. doi: 10.16078/j.tribology.2011.01.001

[15]

王莹, 王立平, 薛群基. 多烷基环戊烷/有机硅烷双层膜的制备及摩擦学性能研究[J]. 摩擦学学报, 2010, 30(5): 437–442. doi: 10.16078/j.tribology.2010.05.008

Wang Ying, Wang Liping, Xue Qunji. Preparation and tribological properties of multiply- alkylated cyclopentane/(3-aminopropyl) triethoxylsilane double-layer film on silicon[J]. Tribology, 2010, 30(5): 437–442. doi: 10.16078/j.tribology.2010.05.008

[16]

刘思思, 张言, 童佳威. 双层自组装分子/离子液体复合润滑薄膜的制备及其摩擦学性能研究[J]. 摩擦学学报, 2017, 37(1): 107–114. doi: 10.16078/j.tribology.2017.01.014

Liu Sisi, Zhang Yan, Tong Jiawei. Preparation and tribological properties of dual self-assembled monolayers/ionic liquids composite lubricating films[J]. Tribology, 2017, 37(1): 107–114. doi: 10.16078/j.tribology.2017.01.014

[17]

Huo L, Du P, Zhou H, et al. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length[J]. Applied Surface Science, 2017, 396: S0169433216324096. doi: 10.1016/j.apsusc.2016.11.049

[18]

冯宇飞, 陈旗湘, 马亮, 等. 薄膜结合能测量技术的最新进展[J]. 科技信息, 2014(12): 8–9, 11. doi: 10.3969/J.ISSN.1671-6027.2014.12.005

Feng Yufei, Chen Qixiang, Ma Liang, et al. Recent advances in thin film binding energy measurement technology[J]. Science and Technology Information, 2014(12): 8–9, 11. doi: 10.3969/J.ISSN.1671-6027.2014.12.005

[19]

张鲁格, 薛泽旭, 张翀, 等. 分子动力学模拟3(5)-(9-蒽基)吡唑分子在自组装膜上的选择性沉积[J]. 高等学校化学学报, 2016, 37(3): 505–512. doi: 10.7503/cjcu20150781

Zhang L, Xue Z, Zhang C, et al. Molecular dynamics studies on the selective deposition of 3(5)-(9-anthryl) pyrazole onto self-assembled monolayers[J]. Chemical Journal of Chinese Universities, 2016, 37(3): 505–512. doi: 10.7503/cjcu20150781

[20]

孙远洋.硅烷混合自组装膜的制备及其摩擦学性能研究[D]. 徐州: 中国矿业大学, 2014.

Sun Yuanyang.Preparation and tribological properties of silane mixed self-assembled monolayers[D]. Xuzhou: China University of Mining and Technology, 2014(in Chinese).

[21]

白涛.稀土复合纳米薄膜的制备及其摩擦学性能研究[D]. 上海: 上海交通大学, 2007.

Bai Tao. Preparation and tribological investigation of rare earth nanocomposite thin films[D]. Shanghai Jiao Tong University, 2007(in Chinese).

[1]

. 硅表面自组装双层膜制备及其摩擦磨损性能研究[J]. 摩擦学学报, 2007, 27(3):-451.

[2]

孙志永, 程先华. 硅基表面稀土改性碳纳米管/氨基硅烷自组装复合膜的摩擦磨损性能[J]. 摩擦学学报, 2011, 31(2):-451.

[3]

刘思思, 张言, 童佳威. 双层自组装分子/离子液体复合润滑薄膜的制备及其摩擦学性能研究[J]. 摩擦学学报, 2017, 37(1):-451. doi: 10.16078/j.tribology.2017.01.014

[4]

. 硅表面聚苯乙烯自组装超薄膜的制备及摩擦磨损性能研究[J]. 摩擦学学报, 2002, 22(2):-451.

[5]

. 点接触边界润滑吸附膜计算模型[J]. 摩擦学学报, 2008, 28(3):-451.

[6]

. 硅烷自组装膜及硅烷/二氧化钛复合膜的XPS表征与摩擦性能研究[J]. 摩擦学学报, 2000, 20(4):-451.

[7]

. 自组装单分子膜的摩擦学研究进展[J]. 摩擦学学报, 2000, 20(5):-451.

[8]

. 界面接触特性对两种自组装分子膜摩擦特性的影响[J]. 摩擦学学报, 2004, 24(1):-451.

[9]

张会臣, 连峰, 关光辉, 朱海波. 紫外照射对FOTS自组装分子膜表面特性和摩擦特性的影响[J]. 摩擦学学报, 2013, 33(5):-451.

[10]

. 仿生自组装纳米复合薄膜的制备与摩擦行为研究[J]. 摩擦学学报, 2001, 21(6):-451.

[11]

王银虎, 万勇, 刘长松. 磷酸锌表面脂肪酸自组装单分子膜的制备及其摩擦学性能研究[J]. 摩擦学学报, 2012, 32(3):-451.

[12]

. γ-甲基丙烯酰氧丙基三甲氧基硅烷自组装膜的制备及其摩擦学性能[J]. 摩擦学学报, 2005, 25(2):-451.

[13]

崔宝凤, 周惠娣, 张俊彦, 陈建敏. 聚酰胺氨类树枝形聚合物插入式自组装膜的制备与摩擦学性能:小分子链长的影响[J]. 摩擦学学报, 2011, 31(1):-451.

[14]

. 二甲基—γ—全氟辛酰氧丙基硅烷自组装膜的制备及其摩擦学性能研究[J]. 摩擦学学报, 2002, 22(3):-451.

[15]

. 利用 AFM 机械刻蚀技术在OTS自组装单分子膜表面制备纳米图案及其力学性能研究[J]. 摩擦学学报, 2008, 28(1):-451.

[16]

杨文斌, 肖乾, 梁军, 李青彪. 碳钢表面微弧氧化膜的制备及摩擦磨损性能研究[J]. 摩擦学学报, 2015, 35(3):-451. doi: 10.16078/j.tribology.2015.03.013

[17]

. 溅射MOS_2膜和PTFE膜在边界润滑条件下的摩擦学性能之研究[J]. 摩擦学学报, 1990, 10(3):-451.

[18]

. 单晶硅表面全氟聚醚润滑膜的制备及摩擦特性研究[J]. 摩擦学学报, 2001, 21(6):-451.

[19]

方刚, 刘秦, 康志新, 王芳. Ti-6Al-4V钛合金表面疏水性复合膜的制备及其微摩擦磨损性能[J]. 摩擦学学报, 2011, 31(6):-451.

[20]

刘百幸, 彭振军, 梁军. TC4合金微弧氧化膜的摩擦磨损性能及其失效机理研究[J]. 摩擦学学报, 2019, 39(1):-451. doi: 10.16078/j.tribology.2018116

  • 计量
    • PDF下载量 (8)
    • 文章访问量 (264)
    • HTML全文浏览量 (72)
    • 引证文献数? (0)
    目录

    Figures And Tables

    硅基底复合自组装膜的制备及其微摩擦磨损性能研究

    刘同冈, 游坤, 赵康康, 查塔尔