2019, 39(2):248-258. doi: 10.16078/j.tribology.2018152

人工髋、膝关节磨损测试标准及模拟试验机研究进展

西南交通大学 机械工程学院摩擦学研究所,四川 成都 610031

通讯作者: 张亚丽, georgetri@163.com

收稿日期: 2018-10-14
录用日期: 2018-12-21
网络出版日期: 2019-03-28

Review of the Artificial Hip and Knee Wear Testing Standards and Simulation Testing Machines

Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Sichuan Chengdu 610031, China

Corresponding author: Yali ZHANG, georgetri@163.com

Received Date: 14 Oct 2018
Accepted Date: 21 Dec 2018
Available Online: 28 Mar 2019

引用本文: 崔文, 张亚丽, 王志强, 曾泓凯, 吴东升, 靳忠民. 人工髋、膝关节磨损测试标准及模拟试验机研究进展[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018152.

Citation: Wen CUI, Yali ZHANG, Zhiqiang WANG, Hongkai ZENG, Dongsheng WU and Zhongmin JIN. Review of the Artificial Hip and Knee Wear Testing Standards and Simulation Testing Machines[J]. TRIBOLOGY.

髋膝关节植入物假体在体内发生摩擦磨损进而造成骨溶解、无菌松动是导致其失效的重要原因之一. 人工髋膝关节磨损试验是对假体材料、设计和加工进行评价的重要形式. 天然髋膝关节承受的运动和载荷十分复杂,研究天然关节在各种行为下的受力和运动范围,并利用专门的髋膝关节模拟器来进行试验和评价,有助于人工关节的设计和耐磨关节材料的发展. 本文中整理了天然髋膝关节的运动范围及载荷,对比了人工髋膝关节假体磨损的国内外标准,总结了主流髋膝关节模拟试验机的结构及主要技术参数,为我国关节行业的研究者提供参考.

关键词: 人工髋关节, 人工膝关节, 磨损, 测试标准, 模拟试验机
[1]

产业研究报告网.2018–2024年中国人工关节行业市场分析与发展前景研究报告[R/OL].2018.

ChinaIRR.org. 2018–2024 Chinese artificial joint industry market analysis and development prospect research report[R/OL].2018(in Chinese).

[2]

Evaluate Med Tech. World preview 2016, Outlook to 2022. Evaluate, 5th Edition[R/OL]. Evaluate Med Tech, 2016..

[3]

刘亚军, 池迎春. 国产人工关节产品新进展[J]. 中国医疗设备, 2015, 30(10): 18–19. doi: 10.3969/j.issn.1674-1633.2015.10.005

Liu Yajun, Chi Yingchun. New progress in domestic artificial joint products[J]. China Medical Devices, 2015, 30(10): 18–19. doi: 10.3969/j.issn.1674-1633.2015.10.005

[4]

Wang R, Cao Q, Zhao Q, Li Y. Bioindustry in China: An overview and perspective[J]. New Biotechnology, 2017, 40: 46–51.

[5]

中华人民共和国国务院. " 十三五”国家科技创新规划[R]. 中华人民共和国国务院, 2016.

The state council of the People’s Republic of China. The 13th five-year plan for national scientific and technological innovation[R]. The state council of the People’s Republic of China, 2016(in Chinese).

[6]

Bergmann G, Bender A, Graichen F, et al. Standardized loads acting in knee implants[J]. Plos One, 2014, 9(1): e86035. doi: 10.1371/journal.pone.0086035

[7]

Trepczynski A, Kutzner I, Schwachmeyer V, et al. Impact of antagonistic muscle co-contraction on in vivo knee contact forces[J]. Journal of Neuroengineering and Rehabilitation, 2018, 15(1): 101–101. doi: 10.1186/s12984-018-0434-3

[8]

丁彪, 李元超. 骨科植入器械国内外标准比较分析[J]. 中国医疗器械杂志, 2011, 35(2): 141–144. doi: 10.3969/j.issn.1671-7104.2011.02.019

Ding Biao, Li Yuanchao. Comparison of domestic and international standards for orthopedic implants[J]. Chinese Journal of Medical Instrumentation, 2011, 35(2): 141–144. doi: 10.3969/j.issn.1671-7104.2011.02.019

[9]

林秾, 赵建宁, 陆维举. 人工髋关节假体磨损微粒的研究进展[J]. 医学研究生学报, 2002, 15(3): 276–278. doi: 10.3969/j.issn.1008-8199.2002.03.030

Lin Nong, Zhao jianning, Lu weiju. The study progress of wear debris from hip prostheses[J]. Journal of Medical Postgraduates, 2002, 15(3): 276–278. doi: 10.3969/j.issn.1008-8199.2002.03.030

[10]

王成焘, 葛世荣, 靳忠民, 等. 骨科植入物工程学[M]. 上海: 上海交通大学出版社, 2016: 186–194.

Wang Chengtao, Ge Shirong, Jin Zhongmin, et al. The engineering of orthopedics implants[M]. Shanghai: Shanghai Jiao Tong University Press, 2016: 186–194(in Chinese).

[11]

胡侦明, 罗先正. 髋关节的生物力学[J]. 中华骨科杂志, 2006, 26(7): 498–500. doi: 10.3760/j.issn:0253-2352.2006.07.020

Hu Zhenming, Luo Xianzheng. Biomechanics of the hip joint[J]. Chinese Journal of Orthopaedics, 2006, 26(7): 498–500. doi: 10.3760/j.issn:0253-2352.2006.07.020

[12]

郑玉涛, 陈岚, 徐根林, 等. 人工髋关节模拟试验机的分析与研究[J]. 中国医疗器械杂志, 2008, 32(5): 859–861.

Zheng Yutao, Chen Lan, Xu Genlin, et al. Development of hip joint simulators[J]. Chinese Journal of Medical Instrumentation, 2008, 32(5): 859–861.

[13]

王成焘. 人体生物摩擦学[M]. 北京: 科学出版社, 2008: 74–80.

Wang Chengtao. Human Biotribology[M]. Beijing: Science Press, 2008: 74–80(in Chinese).

[14]

Aj VDB, Read L, Nigg BM. An analysis of hip joint loading during walking, running, and skiing[J]. Med Sci Sports Exerc, 1999, 31(1): 131–142. doi: 10.1097/00005768-199901000-00021

[15]

Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients[J]. Journal of Biomechanics, 1993, 26(8): 969–990. doi: 10.1016/0021-9290(93)90058-M

[16]

李锋, 李元超, 王成焘. 人工膝关节模拟试验设计研究进展[J]. 生物医学工程学杂志, 2010(2): 448–452.

Li Feng, Li Yuanchao, Wang Chengtao. Review of the design of artificial knee joint simulation test[J]. Journal of Biomedical Engineering, 2010(2): 448–452.

[17]

顾志华. 骨伤生物力学基础[M]. 天津: 天津大学出版社, 1990: 181–195.

Gu Zhihua. Biomechanical basis of bone injury[M]. Tianjin: Tianjin University Press, 1990: 181–195(in Chinese).

[18]

王建平, 吴海山, 王成焘. 人体膝关节动态有限元模型及其在TKR中的应用[J]. 医用生物力学, 2009, 24(5): 333–337. doi: 10.3871/j.1004-7220.2009.05.337.

Wang Jianping, Wu Haishan, Wang Chengtao. Dynamic finite emement modeling of human knee joint and application in TKR[J]. Journal of Medical Biomechanics, 2009, 24(5): 333–337. doi: 10.3871/j.1004-7220.2009.05.337.

[19]

李锋, 李元超, 王成焘. 人工膝关节模拟试验机及其生物摩擦学性能评价研究进展[J]. 摩擦学学报, 2009, 29(5): 481–488. doi: 10.3321/j.issn:1004-0595.2009.05.016

Li Feng, Li Yuanchao, Wang Chengtao. Recent development on artificial knee joint simulation test bench and the corresponding biotribological tests[J]. Tribology, 2009, 29(5): 481–488. doi: 10.3321/j.issn:1004-0595.2009.05.016

[20]

YY/T 0651.1-2016 外科植入物全髋关节假体的磨损第1部分: 磨损试验机的载荷和位移参数及相关的试验环境条件[S]. 北京: 中国标准出版社, 2016.

YY/T 0651.1-2016 Implants for surgery--Wear of total hip-joint prostheses Part I: Loading and displacement parameters for wear-testing machines and corresponding environmental conditions for test[S]. Beijing: Standards Press of China, 2016(in Chinese).

[21]

YY/T 0651.2-2008外科植入物全髋关节假体的磨损第2部分: 测量方法[S]. 北京: 中国标准出版社, 2008.

YY/T 0651.2-2008 Implants for surgery--Wear of total hip-joint prostheses Part 2: Methods of measurement[S]. Beijing: Standards Press of China, 2008(in Chinese).

[22]

ISO 14242-1: 2014 Implants for surgery --Wear of total hip-joint prostheses Part I: Loading and displacement parameters for wear-testing machines and corresponding environmental conditions for test[S]. International Organization for Standardization, 2014..

[23]

ISO 14242-2: 2016 Implants for surgery-- Wear of total hip-joint prostheses Part 2: Methods of measurement[S]. International Organization for Standardization, 2016..

[24]

ISO 14242-3: 2009 Implants for surgery --Wear of total hipjoint prostheses Part 3: Loading and displacement parameters for orbital bearing type wear testing machines and corresponding environmental conditions for test[S]. International Organization for Standardization, 2009..

[25]

ISO 14242-4: 2018 Implants for surgery--Wear of total hip-joint prostheses Part 4: Testing hip prostheses under variations in component positioning which results in direct edge loading[S]. International Organization for Standardization, 2018..

[26]

Bortel E L, Charbonnier B, Heuberger R. Development of a synthetic synovial fluid for tribological testing[J]. Lubricants, 2015, 3(4): 664–686. doi: 10.3390/lubricants3040664

[27]

ASTM F3047M-15, Standard Guide for High Demand Hip Simulator Wear Testing of Hard-on-hard Articulations, ASTM International, West Conshohocken, PA, 2015, www.astm.org..

[28]

ISO 14242-4: 2018 Implants for surgery -- Wear of total hip-joint prostheses Part 4: Testing hip prostheses under variations in component positioning which results in direct edge loading[S]. International Organization for Standardization, 2018..

[29]

ISO 14243-1: 2009 Implants for surgery -- Wear of total knee-joint prostheses Part 1: Loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for test[S]. International Organization for Standardization, 2009..

[30]

ISO 14243-2: 2016 Implants for surgery -- Wear of total knee-joint prostheses Part 2: Methods of measurement[S]. International Organization for Standardization, 2016..

[31]

ISO 14243-3: 2014 Implants for surgery -- Wear of total knee-joint prostheses Part 3: Loading and displacement parameters for wear-testing machines with displacement control and corresponding environmental conditions for test[S]. International Organization for Standardization, 2014..

[32]

YY/T 1426.1-2016外科植入物全膝关节假体的磨损第1部分: 载荷控制的磨损试验机的载荷和位移参数及相关的试验环境条件[S]. 北京: 中国标准出版社, 2016.

YY/T 1426.1-2016 Implants for surgery--Wear of total knee-joint prostheses Part 1: Loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for test[S]. Beijing: Standards Press of China, 2016(in Chinese).

[33]

YY/T 1426.2-2016外科植入物全膝关节假体的磨损第2部分: 测量方法[S]. 北京: 中国标准出版社, 2016.

YY/T 1426.2-2016 Implants for surgery--Wear of total knee-joint prostheses Part 2: Methods of measurement[S]. Beijing: Standards Press of China, 2016(in Chinese).

[34]

YY/T 1426.3-2017外科植入物全膝关节假体的磨损第3部分: 位移控制的磨损试验机的载荷和位移参数及相关的试验环境条件[S]. 北京: 中国标准出版社, 2017.

YY/T 1426.3-2017 Implants for surgery--Wear of total knee-joint prostheses Part 3: Loading and displacement parameters for wear-testing machines with displacement control and corresponding environmental conditions for test[S]. Beijing: Standards Press of China, 2017(in Chinese).

[35]

Schwenke T, Orozco D, Schneider E, et al. Differences in wear between load and displacement control tested total knee replacements[J]. Wear, 2009, 267(5): 757–762.

[36]

Yue B, Varadarajan KM, Ai S, et al. Differences of knee anthropometry between Chinese and white men and women[J]. Journal of Arthroplasty, 2011, 26(1): 124–130. doi: 10.1016/j.arth.2009.11.020

[37]

Zhang Y, Yao Z, Wang S, et al. Motion analysis of Chinese normal knees during gait based on a novel portable system[J]. Gait & Posture, 2015, 41(3): 763–768.

[38]

ASTM F3141-17a, Standard Guide for Total Knee Replacement Loading Profiles, ASTM International, West Conshohocken, PA, 2017, www.astm.org..

[39]

刘庆, 周一新. 人工髋关节摩擦学研究进展[J]. 国际骨科学杂志, 2009, 30(2): 74–77. doi: 10.3969/j.issn.1673-7083.2009.02.003

Liu Qing, Zhou Yixin. Research progress in the tribology of artificial hip joint[J]. International Journal of Orthopaedics, 2009, 30(2): 74–77. doi: 10.3969/j.issn.1673-7083.2009.02.003

[40]

Affatato S, Leardini W, Zavalloni M. Hip joint simulators: state of the art[M]. Bioceramics and Alternative Bearings in Joint Arthroplasty, Steinkopff, 2006: 171–180..

[41]

Galanis N I, Manolakos D E, et al. Design of a hip joint simulator according to the ISO 14242[C]. Proceedings of the World Congress on Engineering, 2011, 3: 6–8..

[42]

Tong J, Zant N P, Wang J Y, et al. Fatigue in cemented acetabular replacements[J]. International Journal of Fatigue, 2008, 30(8): 1366–1375. doi: 10.1016/j.ijfatigue.2007.10.013

[43]

Wang Q, Zhang D, Shirong G E. Biotribological behavior of ultra high molecular weight polyethylene composites containing coralline hydroxyapatite in a hip joint simulator[J]. Acta Materiae Compositae Sinica, 2008, 221(3): 307–313.

[44]

Saikko V. A 12-station anatomic hip joint simulator[J]. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 2005, 219(6): 437–448. doi: 10.1243/095441105X34419

[45]

Dowson D, Hardaker C, Flett M, et al. A hip joint simulator study of the performance of metal-on-metal joints: Part II: design[J]. Journal of Arthroplasty, 2004, 19(8): 124–130.

[46]

Tipper JL, Hatton A, Nevelos JE, et al. Alumina-alumina artificial hip joints. Part II: Characterisation of the wear debris from in vitro hip joint simulations[J]. Biomaterials, 2002, 23(16): 3441–3448. doi: 10.1016/S0142-9612(02)00048-0

[47]

Herrera L, Lee R, Longaray J, et al. Hip simulator evaluation of the effect of femoral head size on sequentially cross-linked acetabular liners[J]. Wear, 2007, 263(7): 1034–1037.

[48]

Kurtz SM, Manley M, Wang A, et al. Dumbleton J. Comparison of the properties of annealed crosslinked (Crossfire) and conventional polyethylene as hip bearing materials[J]. Bull Hosp Jt Dis, 2002, 61(61): 17–26.

[49]

Elizabeth H, Emma S, Jason L. Effect of sodium azide concentration on wear and bacteria growth in a hip simulation test[J]. Frontiers in Bioengineering & Biotechnology, 2016: 4–4.

[50]

Moro T, Kawaguchi H, Ishihara K, et al. Wear resistance of artificial hip joints with poly(2-methacryloyloxyethyl phosphorylcholine) grafted polyethylene: Comparisons with the effect of polyethylene cross-linking and ceramic femoral heads[J]. Biomaterials, 2009, 30(16): 2995–3001. doi: 10.1016/j.biomaterials.2009.02.020

[51]

Walker P S, Blunn G W, Broome D R, et al. A knee simulating machine for performance evaluation of total knee replacements[J]. Journal of Biomechanics, 1997, 30(1): 83–89. doi: 10.1016/S0021-9290(96)00118-2

[52]

Dowson D, Gillis B J, J R A. Penetration of metallic femoral components into polymeric tibial components observed in a knee joint simulator[J]. Acs Symposium, 1985, 287(10): 215–228.

[53]

Pappas M J, Buechel F F. On the use of a constant radius femoral component in meniscal bearing knee replacement[J]. Journal of Orthopaedic Rheumatology, 1994, 7(1): 27–29.

[54]

Desjardins J D, Walker P S, Haider H, et al. The use of a force-controlled dynamic knee simulator to quantify the mechanical performance of total knee replacement designs during functional activity[J]. Journal of Biomechanics, 2000, 33(10): 1231–1242. doi: 10.1016/S0021-9290(00)00094-4

[55]

Mueller U, Reinders J, Smithromanski S. Wear performance of calcium carbonate-containing knee spacers[J]. Materials, 2017, 10(7): 805–816. doi: 10.3390/ma10070805

[56]

Barnett P I, Mcewen H M, Auger D D, et al. Investigation of wear of knee prostheses in a new displacement/force-controlled simulator[J]. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 2002, 216(1): 51–61. doi: 10.1243/0954411021536289

[57]

Ranawat A, Meftah M, Ranawat C. Effect of anatomical patella on anterior knee pain, crepitation and satisfaction: A prospective matched-pair analysis[J]. International Information & Library Review, 2016, 28(3): 249–260.

[58]

Essner A, Wang A, Poggie M. Crosslinked UHMWPE subject to malaligned knee wear[C]//Transactions of the Annual Meeting-Orthopaedic Research Society, 2002: 1042−1042..

[1]

李 锋, 李元超, 王成焘. 人工膝关节模拟试验机及其生物摩擦学性能评价研究进展[J]. 摩擦学学报, 2009, 29(5):-258.

[2]

苏永琳, 杨沛然, 付增良, 王成焘. 步态条件下人工膝关节线接触弹流润滑分析[J]. 摩擦学学报, 2010, 30(1):-258.

[3]

王崧全, 张德坤, 胡宁宁, 张嘉鹭. 摩擦热对髋关节假体服役寿命影响机制的研究进展[J]. 摩擦学学报, 2018, 38(3):-258. doi: 10.16078/j.tribology.2018.03.015

[4]

李锋, 王安敏, 王成焘. 天然关节软骨与医用不锈钢摩擦磨损行为研究[J]. 摩擦学学报, 2016, 36(1):-258. doi: 10.16078/j.tribology.2016.01.007

[5]

李锋, 薄路铖, 陈景福, 郭红, 张桂林, 王成焘. 关节软骨与髋关节陶瓷材料往复旋转运动摩擦行为研究[J]. 摩擦学学报, 2018, 38(2):-258. doi: 10.16078/j.tribology.2018.02.004

[6]

杨洁, 吴宁, 李帅, 解锡明, 焦亚男, 陈利. 织造中碳纤维束间的摩擦磨损试验模拟[J]. 摩擦学学报, 2019, 39(1):-258. doi: 10.16078/j.tribology.2018104

[7]

孟祥慧, 谢友柏, 戴旭东. 典型磨损情况下的内燃机性能退化预测[J]. 摩擦学学报, 2009, 29(5):-258.

[8]

王文健, 刘启跃, 朱旻昊. 轮轨材料硬度匹配性能试验研究[J]. 摩擦学学报, 2013, 33(1):-258.

[9]

胡文萍, 王平, 陈光雄, 朱旻昊. 摩擦自激振动引起摩擦面波状磨耗的试验研究[J]. 摩擦学学报, 2013, 33(6):-258.

[10]

吴海勇, 黄辉, 徐西鹏. 单颗金刚石划擦Ta12W的试验研究[J]. 摩擦学学报, 2015, 35(5):-258. doi: 10.16078/j.tribology.2015.05.017

[11]

. Ni基高温合金攻丝中高速钢丝锥的摩擦磨损性能研究[J]. 摩擦学学报, 2005, 25(1):-258.

[12]

王松, 廖振华, 刘宇宏, 刘伟强, 温诗铸. 人工椎间盘生物摩擦学研究进展:脊柱模拟试验机方法[J]. 摩擦学学报, 2013, 33(2):-258.

[13]

. 基于仿生人工关节的评价装置及磨损试验研究[J]. 摩擦学学报, 2006, 26(1):-258.

[14]

. 氧化硼的纳米磨损特性研究[J]. 摩擦学学报, 1999, 19(2):-258.

[15]

. 磨损问题的仿真求解研究[J]. 摩擦学学报, 1999, 19(1):-258.

[16]

. 摩擦磨损的接触界面势垒理论研究[J]. 摩擦学学报, 2007, 27(1):-258.

[17]

朱章杨, 莫继良, 王东伟, 李建熹, 陈光雄, 朱旻昊. 沟槽对界面振动及摩擦磨损特性的影响[J]. 摩擦学学报, 2017, 37(4):-258. doi: 10.16078/j.tribology.2017.04.018

[18]

钟雯, 董霖, 王宇, 朱维兵, 刘启跃. 高速与重载铁路的疲劳磨损对比研究[J]. 摩擦学学报, 2012, 32(1):-258.

[19]

孟令通, 谢鑫林, 李利, 张雷. Ag-Cu-MoS2复合材料的真空载流磨损性能[J]. 摩擦学学报, 2016, 36(6):-258. doi: 10.16078/j.tribology.2016.06.013

[20]

赵帅, 王晓雷. 高分子材料机械密封磨损特性及表面织构的影响[J]. 摩擦学学报, 2015, 35(6):-258. doi: 10.16078/j.tribology.2015.06.016

  • 计量
    • PDF下载量 (14)
    • 文章访问量 (303)
    • HTML全文浏览量 (41)
    • 引证文献数  (0)
    目录

    Figures And Tables

    人工髋、膝关节磨损测试标准及模拟试验机研究进展

    崔文, 张亚丽, 王志强, 曾泓凯, 吴东升, 靳忠民