2019, 39(4):407-417. doi: 10.16078/j.tribology.2018171

尼龙自润滑性与表面织构协同作用对HDPE基水润滑轴承摩擦磨损性能的影响

1.?

武汉理工大学 能源与动力工程学院,湖北 武汉 430063

2.?

国家水运安全工程技术研究中心 可靠性工程研究所,湖北 武汉 430063

通讯作者: 郭智威, zwguo@whut.edu.cn

收稿日期: 2018-11-12
录用日期: 2019-03-05
网络出版日期: 2019-07-28

The Synergistic Effect Mechanism of PA66 Self-Lubrication Property and Surface Texture on Tribological Performance of HDPE Water-Lubricated Bearing

1.?

School of Energy and Power Engineering, Wuhan University of Technology, Hubei Wuhan 430063, China

2.?

Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Hubei Wuhan 430063, China

Corresponding author: Zhiwei GUO, zwguo@whut.edu.cn

Received Date: 12 Nov 2018
Accepted Date: 05 Mar 2019
Available Online: 28 Jul 2019

引用本文: 崔旨桃, 郭智威, 谢心, 袁成清. 尼龙自润滑性与表面织构协同作用对HDPE基水润滑轴承摩擦磨损性能的影响[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018171.

Citation: Zhitao CUI, Zhiwei GUO, Xin XIE and Chengqing YUAN. The Synergistic Effect Mechanism of PA66 Self-Lubrication Property and Surface Texture on Tribological Performance of HDPE Water-Lubricated Bearing[J]. TRIBOLOGY.

传统的船舶尾轴油润滑轴承的润滑油泄露造成了严重的海洋污染,逐渐被水润滑轴承取代,但水较差的承载能力要求水润滑轴承具有良好的减磨耐磨性能. 通过HDPE与PA66的共混材料研究尼龙润滑填料和表面织构协同作用对水润滑轴承摩擦磨损性能的影响,利用超景深三维显微系统测量共混材料试样浸泡后的表面纹理结构,利用CBZ-1摩擦磨损试验机对试样进行摩擦试验并记录摩擦系数,利用表面轮廓仪和扫描电镜(SEM)观察试样磨损形貌并分析其磨损机理. 试验表明:PA66的添加能优化共混材料的摩擦学性能. PA66的水溶胀性使共混材料表面形成微凸织构,降低摩擦系数和减轻表面磨损;PA66的存在可使共混材料在摩擦过程中在对摩铜盘表面形成转移膜,有效保护摩擦副表面,减轻磨损.

关键词: 水润滑轴承, 自润滑性能, 表面织构, 摩擦磨损, 协同机理
[1]

严新平, 袁成清, 白秀琴, 等. 绿色船舶的摩擦学研究现状与进展[J]. 摩擦学学报, 2012, 32(4): 410–420. doi: 10.16078/j.tribology.2012.04.016

Yan Xinping, Yuan Chengqing, Bai Xiuqin. Insight into tribological problems of green ship and corresponding research progresses[J]. Tribology, 2012, 32(4): 410–420. doi: 10.16078/j.tribology.2012.04.016

[2]

Lingwall B A, Sexton T N, Cooley C H. Polycrystalline diamond bearing testing for marine hydrokinetic application[J]. Wear, 2013, 302: 1514–1519. doi: 10.1016/j.wear.2012.11.068

[3]

Ren Tianming, Feng Ming. Anti-shock characteristics of water lubricated bearing for fuel cell vehicle air compressor[J]. Tribology International, 2017, 107: 56–64. doi: 10.1016/j.triboint.2016.11.016

[4]

Gong Jiayu, Jin Yong, Liu Zhenglin, et al. Study on influencing factors of lubrication performance of water-lubricated micro-groove bearing[J]. Tribology International, 2019, 103: 390–397. doi: 10.1016/j.triboint.2018.08.035

[5]

Wojciech Litwin. Influence of local bush wear on water lubricated sliding bearing load carrying capacity[J]. Tribology International, 2016, 103: 352–358. doi: 10.1016/j.triboint.2016.06.044

[6]

Sui G, Zhong W H, Ren X, et al. Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers[J]. Materials Chemistry and Physics, 2009, 115: 404–412. doi: 10.1016/j.matchemphys.2008.12.016

[7]

黄金贵, 王琪, 张鹰. 填料特性对聚乙烯基复合材料性能的影响[J]. 摩擦学学报, 1997, 16(1): 54–60. doi: 10.16078/j.tribology.1997.01.008

Huang Jingui, Wang Qi, Zhang Ying. Effect of filler properties on properties of polyethylene-based composites[J]. Tribology, 1997, 16(1): 54–60. doi: 10.16078/j.tribology.1997.01.008

[8]

Guo Zhiwei, Yuan Chengqing, Liu Aixue, et al. Study on tribological properties of novel biomimetic material for water-lubricated stern tube bearing[J]. Wear, 2017, 376-377: 911–919. doi: 10.1016/j.wear.2017.01.081

[9]

杨宗榕, 郭智威, 袁成清. 仿生微胶囊复合水润滑轴承材料的摩擦性能研究[J]. 摩擦学学报, 2018, 38(1): 28–36. doi: 10.16078/j.tribology.2018.01.004

Yang Zongrong, Guo zhiwei, Yuan Chengqing. Tribological properties of water-lubricated stern bearing composites modified with biomimetic microcapsules[J]. Tribology, 2018, 38(1): 28–36. doi: 10.16078/j.tribology.2018.01.004

[10]

Palabiyik M, Bahadur S. Tribological studies of polyamide 6 and high-density polyethylene blends filled with PTFE and copper oxide and reinforced with short glass fibers[J]. Wear, 2002, 253: 369–376. doi: 10.1016/S0043-1648(02)00144-8

[11]

Liang Liang, Yuan Jiandong, Lia Xiaoqiang, et al. Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing[J]. International Journal of Refractory Metals & Hard Materials, 2018, 72: 211–222. doi: 10.1016/j.ijrmhm.2017.12.023

[12]

Lu Libin, Zhang Zhen, Guan Yingchun, et al. Comparison of the effect of typical patterns on friction and wear properties of chromium alloy prepared by laser surface texturing[J]. Optics & Laser Technology, 2018, 106: 272–279. doi: 10.1016/j.optlastec.2018.04.020

[13]

Joshia G S, Putignano C, Gaudiusoa C, et al. Effects of the micro surface texturing in lubricated non-conformal point contacts[J]. Tribology International, 2018, 127: 269–301. doi: 10.1016/j.triboint.2018.06.021

[14]

Zhang Junhui, Chen Yuan, Xu Bing, et al. Effect of surface texture on wear reduction of the tilting cylinder and the valve plate for a high-speed electro-hydrostatic actuator pump[J]. Wear, 2018, 414-415: 68–78. doi: 10.1016/j.wear.2018.08.003

[15]

Hu Jun, Xu Hebing. Friction and wear behavior analysis of the stainless steel surface fabricated by laser texturing underwater[J]. Tribology International, 2016, 102: 371–377. doi: 10.1016/j.triboint.2016.06.001

[16]

Hamilton D B, Walowit J A, Allen C M. A theory of lubrication by micro-irregularities[J]. Journal of Basic Engineering, 1966, 88(1): 177–185. doi: 10.1115/1.3645799

[17]

Auezhan Amanov, Ryo Tsuboi, Hironobu Oe, et al. The influence of bulges produced by laser surface texturing on the sliding friction and wear behavior[J]. Tribology International, 2013, 60: 216–223. doi: 10.1016/j.triboint.2012.10.018

[18]

Tang Guanghai, John KL Ho, Dong Guangneng, et al. Fabrication self-recovery bulge textures on TiNi shape memory alloy and its tribological properties in lubricated sliding[J]. Tribology International, 2016, 96: 11–22. doi: 10.1016/j.triboint.2015.12.011

[19]

Srinath G, Gnanamoorthy R. Sliding wear performance of polyamide 6–clay nanocomposites in water[J]. Composites Science and Technology, 2007, 67: 399–405. doi: 10.1016/j.compscitech.2006.09.004

[20]

Unal H, Mimaroglu A. Friction and wear performance of polyamide 6 and graphite and wax polyamide 6 composites under dry sliding conditions[J]. Wear, 2012, 289: 132–137. doi: 10.1016/j.wear.2012.04.004

[21]

Thordon Bearing Inc. Engineering technical manual of thordon[Z]. 2008..

[22]

Shipping LRO. Rules and regulations for the classification of ships[Z]. Lloyd's Register, 2013..

[23]

Chang Tie, Guo Zhiwei, Yuan Chengqing. Study on influence of Koch snowflake surface texture on tribological performance for marine water-lubricated bearings[J]. Tribology International, 2019, 129: 29–37. doi: 10.1016/j.triboint.2018.08.015

[24]

刘书天, 董从林, 袁成清, 等. 三种典型船舶轴承复合材料的物理性能对摩擦学行为的影响研究[J]. 摩擦学学报, 2018, 38(5): 528–536. doi: 10.16078/j.tribology.2018.05.005

Liu Shutian, Dong Conglin, Yuan Chengqing, et al. Study on the effect of physical properties of three typical ship bearing composite materials on tribological properties[J]. Tribology, 2018, 38(5): 528–536. doi: 10.16078/j.tribology.2018.05.005

[25]

温家铸, 黄平, 田煜, 等. 摩擦学原理[M]. 北京: 清华大学出版社, 2008.

Wen Shizhu, Huang Ping, Tian yu. Principles of tribology[M]. Beijing: Tsinghua University Press, 2008(in Chinese).

[26]

周建辉, 刘正林, 朱汉华, 等. 船舶水润滑橡胶尾轴承摩擦性能试验研究[J]. 武汉理工大学学报(交通科学与工程版), 2008, (5): 842–844, 860. doi: 10.3963/j.issn.2095-3844.2008.05.018

Zhou Jianhui, Liu Zhenglin, Zhu Hanhua, et al. Experimental study on friction performance of water-lubricated rubber stern bearing of ship[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2008, (5): 842–844, 860. doi: 10.3963/j.issn.2095-3844.2008.05.018

[27]

王权岱, 李志龙, 郭兵兵, 等. 不同润滑状态下表面润湿性的摩擦学特性研究[J]. 摩擦学学报, 2018, 38(6): 665–672. doi: 10.16078/j.tribology.2018072

Wang Quandai, Li Zhilong, Guo Bingbing, et al. Tribological properties of surface wettability under different lubrication regimes[J]. Tribology, 2018, 38(6): 665–672. doi: 10.16078/j.tribology.2018072

[28]

Wang Xiaolei, Kato Koji, Adachi Koshi, et al. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water[J]. Tribology International, 2003, 36: 189–197.

[29]

杨亮, 候玉欣, 何洪途, 等. 滑动速度对磷酸盐激光玻璃摩擦磨损性能的影响[J]. 摩擦学学报, 2018, 38(2): 196–203. doi: 10.16078/j.tribology.2018.02.010

Yang Liang, Hou Yuxin, He Hongtu, et al. Effects of sliding velocity on the friction and wear behaviors of phosphate laser glass[J]. Tribology, 2018, 38(2): 196–203. doi: 10.16078/j.tribology.2018.02.010

[1]

孙建芳, 李傲松, 苏峰华, 李助军. 表面织构钛合金的干摩擦和全氟聚醚油润滑下的摩擦学性能研究[J]. 摩擦学学报, 2018, 38(6):-417. doi: 10.16078/j.tribology.2018111

[2]

苏峰华, 毛川, 李助军. 织构深度对不锈钢表面油润滑条件下摩擦学性能影响的试验和仿真研究[J]. 摩擦学学报, 2019, 39(2):-417. doi: 10.16078/j.tribology.2018143

[3]

刘小君, 董磊, 王森, 李国瑞, 刘焜. 微凹坑织构表面对脂润滑关节轴承摩擦特性的影响[J]. 摩擦学学报, 2014, 34(4):-417.

[4]

潘阳, 王家序, 王飞, 邓海峰, 崔洪斌, 李金明. 考虑空化影响的水润滑橡胶合金轴承冲蚀磨损研究[J]. 摩擦学学报, 2014, 34(5):-417.

[5]

曾帅帅, 李锦棒, 陈鹏飞, 崔玉国. 定子表面织构对超声电机性能的影响[J]. 摩擦学学报, 2019, 39(4):-417. doi: 10.16078/j.tribology.2019015

[6]

姜 亮, 马国亮, 王晓雷. PDMS表面织构润滑特性的研究[J]. 摩擦学学报, 2010, 30(3):-417.

[7]

杨笑, 孟祥铠, 彭旭东, 王玉明. 表面织构化机械密封热弹流润滑性能分析[J]. 摩擦学学报, 2018, 38(2):-417. doi: 10.16078/j.tribology.2018.02.011

[8]

王洪涛, 朱华. 圆柱形微凹坑排布形式对织构表面摩擦性能的影响[J]. 摩擦学学报, 2014, 34(4):-417.

[9]

杨超, 刘小君, 杨海东, 刘焜. 表面织构对刀具切削性能及前刀面摩擦特性的影响[J]. 摩擦学学报, 2015, 35(2):-417. doi: 10.16078/j.tribology.2015.02.015

[10]

方媛, 樊恒中, 张永胜, 宋俊杰, 胡丽天. 氧化铝/钼自润滑结构陶瓷表面三维复合润滑层的制备与摩擦学性能研究[J]. 摩擦学学报, 2017, 37(3):-417. doi: 10.16078/j.tribology.2017.03.016

[11]

阳江舟, 莫继良, 盖小红, 陈光雄, 朱旻昊. 制动盘材料表面织构化处理对摩擦噪声影响的试验分析[J]. 摩擦学学报, 2015, 35(3):-417. doi: 10.16078/j.tribology.2015.03.022

[12]

何霞, 钟林, 王国荣, 杨昌海, 蒋龙. 织构化柱塞对压裂泵密封副的摩擦学性能影响[J]. 摩擦学学报, 2014, 34(4):-417.

[13]

周广武, 王家序, 王战江, 韩彦峰, 蒲伟. 多沟槽水润滑橡胶合金轴承润滑特性研究[J]. 摩擦学学报, 2013, 33(6):-417.

[14]

王洪涛, 李艳, 朱华. 椭圆柱形织构几何参数和排布模式对其润滑减摩性能的影响[J]. 摩擦学学报, 2016, 36(1):-417. doi: 10.16078/j.tribology.2016.01.012

[15]

卢艳, 刘佐民. 微循环表面网状形态对其润滑特性影响的研究[J]. 摩擦学学报, 2013, 33(4):-417.

[16]

李俊玲, 陈平, 邵天敏, 项欣. 葫芦形微凹坑对不锈钢表面摩擦学性能的影响[J]. 摩擦学学报, 2016, 36(2):-417. doi: 10.16078/j.tribology.2016.02.010

[17]

赵帅, 王晓雷. 高分子材料机械密封磨损特性及表面织构的影响[J]. 摩擦学学报, 2015, 35(6):-417. doi: 10.16078/j.tribology.2015.06.016

[18]

王正国, 莫继良, 陈光雄, 朱旻昊. 沟槽型织构化表面摩擦噪声特性试验研究[J]. 摩擦学学报, 2013, 33(3):-417.

[19]

董志伟, 万勇, 屠婷婷, 姚文清. 45#钢表面织构上硬脂酸薄膜减摩性能的研究[J]. 摩擦学学报, 2014, 34(1):-417.

[20]

程香平, 康林萍, 张友亮, 孟祥铠, 彭旭东, 王德, 付远. 润滑条件下菱形孔织构端面摩擦学特性研究[J]. 摩擦学学报, 2015, 35(6):-417. doi: 10.16078/j.tribology.2015.06.002

  • 计量
    • PDF下载量 (12)
    • 文章访问量 (292)
    • HTML全文浏览量 (83)
    • 引证文献数? (0)
    目录

    Figures And Tables

    尼龙自润滑性与表面织构协同作用对HDPE基水润滑轴承摩擦磨损性能的影响

    崔旨桃, 郭智威, 谢心, 袁成清