2019, 39(4):434-443. doi: 10.16078/j.tribology.2019017

水润滑环境下聚合物PLL-g-PEG的宏观摩擦学性能的研究

1.?

青岛理工大学 机械与汽车工程学院,山东 青岛 266520

2.?

万博manbetⅹapp_万博app怎么提钱太黑了_万博体育app3.0 苹果 固体润滑国家重点实验室,甘肃 兰州 730000

通讯作者: 杨淑燕, yangshuyan@qut.edu.cn

收稿日期: 2019-01-25
录用日期: 2019-03-12
网络出版日期: 2019-07-28

Macro-Tribological Studies of Polymer PLL-g-PEG in Aqueous Lubrication

1.?

School of Mechanical Engineering, Qingdao Technological University, Shandong Qingdao 266520, China

2.?

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu Lanzhou 730000, China

Corresponding author: Shuyan YANG, yangshuyan@qut.edu.cn

Received Date: 25 Jan 2019
Accepted Date: 12 Mar 2019
Available Online: 28 Jul 2019

引用本文: 李栋, 杨淑燕, 郭峰. 水润滑环境下聚合物PLL-g-PEG的宏观摩擦学性能的研究[J]. 摩擦学学报. doi: 10.16078/j.tribology.2019017.

Citation: Dong LI, Shuyan YANG and Feng GUO. Macro-Tribological Studies of Polymer PLL-g-PEG in Aqueous Lubrication[J]. TRIBOLOGY.

将聚(L-赖氨酸)-g-聚(乙二醇)(以下简称PLL-g-PEG)溶解在HEPES水溶液中时,通过球-3板式摩擦试验机研究了添加聚合物PLL-g-PEG对摩擦磨损性能的影响;利用光干涉法在球-盘式纳米薄膜测量装置上初步研究了水基润滑环境下PLL-g-PEG对成膜特性的影响. 结果表明:PLL-g-PEG可降低摩擦并减小磨损,主要归因于表面接枝PLL-g-PEG后形成的一层“刷”状的水化层(Hydration)起到了良好润滑作用,且摩擦性能的改善程度主要受接触应力、卷吸速度和摩擦表面基底材料的影响. 试验过程中发现了水基润滑条件下,PLL-g-PEG聚合物刷在摩擦过程中不断遭到破坏,与此同时又快速吸附到摩擦表面上而进行“自我治愈”的行为,故而有效改善了润滑效果. 光干涉的测量结果表明:添加PLL-g-PEG后,在接枝聚合物刷的球和玻璃盘的接触面间形成了一层由聚合物刷促成的且具有一定承载能力的水化层,这层水膜保护层虽然非常薄,却可以在卷吸速度为1~64 mm/s时有效分离上下接触面从而达到良好的润滑效果. 该研究工作将为深入理解水基润滑的成膜特性及机理提供必要的支持.

关键词: 聚合物PLL-g-PEG, 水润滑机理, 自治愈行为, 成膜特性, 宏观摩擦学性能
[1]

王家序, 陈战, 秦大同. 以水为润滑介质的摩擦副关键问题研究[J]. 润滑与密封, 2001, 2: 34–36. doi: 10.3969/j.issn.0254-0150.2001.02.013

Wang Jiaxu, Chen Zhan, Qin Datong. Study on the key problems of water lubricated friction pair[J]. Lubrication Engineering, 2001, 2: 34–36. doi: 10.3969/j.issn.0254-0150.2001.02.013

[2]

Ratoi M, Spikes H A. Lubricating properties of aqueous surfactant solutions[J]. Tribology Transaction, 1999, 42(3): 479–486. doi: 10.1080/10402009908982244

[3]

温诗铸, 黄平.摩擦学原理[M].北京:清华大学出版社, 2008.

Wen Shizhu, Huang Ping. Tribology Principle[M]. Beijing: Tsinghua University Press, 2008(in Chinese).

[4]

Jahn S, Seror J, Klein J. Lubrication of articular cartilage[J]. Annual Review of Biomedical Engineering, 2016, 18(1): 235–258. doi: 10.1146/annurev-bioeng-081514-123305

[5]

Lee S. Boundary lubrication of oxide surfaces by Poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) in aqueous media[J]. Tribology Letters, 2003, 15(3): 231–239. doi: 10.1023/A:1024861119372

[6]

Nalam P C, Clasohm J N, Mashaghi A, et al. Macrotribologicalstudies of poly(L-lysine)-graft-poly(ethylene glycol) in aqueous glycerol mixtures[J]. Tribology Letters, 2010, 37(3): 541–552. doi: 10.1007/s11249-009-9549-9

[7]

Markus Müller, Lee S, Spikes H A, et al. The influence of molecular architecture on the macroscopic lubrication properties of the brush-like Co-polyelectrolyte poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) adsorbed on oxide surfaces[J]. Tribology Letters, 2003, 15(4): 395–405. doi: 10.1023/B:TRIL.0000003063.98583.bb

[8]

Lee S. Tribological properties of poly(L-lysine)-g-poly(ethylene glycol) films: Influence of polymer architecture and adsorbed conformation[J]. ACS Applied Materials & Interfaces, 2009, 1(6): 1224–30.

[9]

Lee S, M Müller, Heeb R, et al. Self-healing behavior of a polyelectrolyte-based lubricant additive for aqueous lubrication of oxide materials[J]. Tribology Letters, 2006, 24(3): 217–223. doi: 10.1007/s11249-006-9121-9

[10]

Spikes H A, Guangteng G. Properties of ultra-thin lubricating film using wedged spacer layer optical interferometry in D Dowson (ed)[C]. Proceedings of 14th Leeds-Lyon Symposium on Tribology, 1988, 275-279..

[11]

Johnston G J, Wayte R, Spikes H A. The measurement and study of very thin lubricant films in concentrated contact[J]. STLE Tribology Transactions, 1991, 34(2): 187–194. doi: 10.1080/10402009108982026

[12]

Luo J B, Huang P, Wen S Z, et al. Characteristics of liquid lubricant films at the nano-scale[J]. ASME Transactions, Journal of Tribology, 1999, 121(4): 872–878. doi: 10.1115/1.2834149

[13]

Li X M, Guo F, Wong P L, et al. Regulation of lubricant supply by wettability gradient in rolling EHL contacts[J]. Tribology International, 2018, 120: 565–574. doi: 10.1016/j.triboint.2018.01.020

[14]

Parks G A. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxocomplex systems[J]. Chemical Reviews, 1965, 65(2): 177–198. doi: 10.1021/cr60234a002

[15]

Hartung W, Rossi A, Lee S, et al. Aqueous lubrication of SiC and Si3N4, ceramics aided by a brush-like copolymer additive, poly( l-lysine)-graft-poly(ethylene glycol)[J]. Tribology Letters, 2009, 34(3): 201–210. doi: 10.1007/s11249-009-9424-8

[16]

Lee S, Zürcher S, Dorcier A, et al. Adsorption and lubricating properties of poly(l-lysine)-graft-poly(ethylene glycol) on human-hair surfaces[J]. ACS Applied Materials & Interfaces, 2009, 1(9): 1938.

[17]

Drobek T, Spencer N D. Nanotribology of surface-grafted PEG layers in an aqueous environment[J]. Langmuir, 2008, 24(4): 1484–1488. doi: 10.1021/la702289n

[18]

Yang W, Zhou F. Polymer brushes for antibiofouling and lubrication[J]. Biosurface and Biotribology, 2017, 3(3): 97–114. doi: 10.1016/j.bsbt.2017.10.001

[1]

. 白色润滑成膜膏的研制及其摩擦学特性与应用[J]. 摩擦学学报, 1997, 17(3):-443.

[2]

. 酯化型环氧化合物摩擦成膜对润滑油摩擦学性能影响之研究[J]. 摩擦学学报, 1991, 11(2):-443.

[3]

刘翔, 王金涛, 张跃, 张竟月, 李占宏, 许常红, 佟林. 游离水对点接触区润滑油成膜特性的影响[J]. 摩擦学学报, 2017, 37(6):-443. doi: 10.16078/j.tribology.2017.06.006

[4]

. 尼龙1010在水润滑下的摩擦学特性与磨损机理[J]. 摩擦学学报, 1997, 17(2):-443.

[5]

. 纳米二氧化硅水溶胶成膜特性研究[J]. 摩擦学学报, 2004, 24(2):-443.

[6]

. 摩擦偶件对单晶硅宏观摩擦磨损行为的影响[J]. 摩擦学学报, 2005, 25(3):-443.

[7]

. 两类聚合物合金摩擦学特性的试验研究[J]. 摩擦学学报, 1997, 17(4):-443.

[8]

. MoS_2和PTFE填充聚合物轴承的摩擦学特性[J]. 摩擦学学报, 1986, 6(1):-443.

[9]

. BL-1型轮轨润滑成膜膏的研制及其综合性能考察[J]. 摩擦学学报, 1991, 11(1):-443.

[10]

陈丽, 张俊彦. 环氧改性的单晶硅表面聚合物薄膜的摩擦学特性研究[J]. 摩擦学学报, 2011, 31(6):-443.

[11]

崔宝凤, 周惠娣, 张俊彦, 陈建敏. 聚酰胺氨类树枝形聚合物插入式自组装膜的制备与摩擦学性能:小分子链长的影响[J]. 摩擦学学报, 2011, 31(1):-443.

[12]

李春风, 罗新民, 陈波水. 聚合物/无机纳米复合材料润滑油添加剂的摩擦学功能设计[J]. 摩擦学学报, 2011, 31(1):-443.

[13]

. 聚四氟乙烯对齿轮润滑成膜膏润滑性能的影响[J]. 摩擦学学报, 1990, 10(1):-443.

[14]

. 聚合物共混物与固体润滑[J]. 摩擦学学报, 1986, 6(3):-443.

[15]

魏强兵, 岳芹宇, 李乐乐, 付甜, 麻拴红, 周峰. 聚多巴胺辅助两性离子聚合物界面组装制备水润滑纳米涂层[J]. 摩擦学学报, 2019, 39(4):-443. doi: 10.16078/j.tribology.2019069

[16]

. 十八烯反应膜的制备及其微观摩擦学性能研究[J]. 摩擦学学报, 2002, 22(5):-443.

[17]

. 聚合物摩擦学的研究动向—记国际聚合物磨损及其控制讨论会[J]. 摩擦学学报, 1985, 5(3):-443.

[18]

. 粉末喷涂的聚合物基固体润滑涂层[J]. 摩擦学学报, 1989, 9(1):-443.

[19]

刘国强, 郭文清, 刘志鲁, 蔡美荣, 王晓龙. 聚合物仿生润滑剂研究进展[J]. 摩擦学学报, 2015, 35(1):-443. doi: 10.16078/j.tribology.2015.01.016

[20]

. 表面力能学性质对聚合物摩擦性能的影响[J]. 摩擦学学报, 1982, 2(4):-443.

  • 计量
    • PDF下载量 (7)
    • 文章访问量 (207)
    • HTML全文浏览量 (70)
    • 引证文献数? (0)
    目录

    Figures And Tables

    水润滑环境下聚合物PLL-g-PEG的宏观摩擦学性能的研究

    李栋, 杨淑燕, 郭峰