2011, 31(4):388-396.

多股螺旋弹簧扭动微动磨损机理研究

1.?

重庆大学 机械传动国家重点实验室,重庆 400030

2.?

西南交通大学 牵引力国家重点实验室摩擦学研究所,四川 成都 610031

通讯作者: 王时龙, slwang@cqu.edu.cn

收稿日期: 2010-08-04

基金项目: 国家杰出青年科学基金项目(50925518)、国家自然科学基金项目(50775226)、教育部科学技术研究重点项目(109129)、重庆市科技攻关计划项目(CSTC2009AC3049)、重庆大学研究生科技创新基金资助项目(200911A1A0020318)、重庆大学"211工程"三期创新人才培养计划建设项目(S-09106)资助. were abrasive wear, oxidative wear and the delamination accompanied by the obvious plastic deformation in the mixed fretting and slip regimes. Key words: stranded-wire helical spring, torsional fretting, running behavior, failure mechanism

Torsional Fretting Wear of Stranded-Wire Helical Spring

1.?

State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China

2.?

National Key Laboratory of Traction Power, Tribology Research Institute, Southwest Jiaotong University, Chengdu 610031, China

Corresponding author: WANG Shi-long, slwang@cqu.edu.cn

Received Date: 04 Aug 2010

Fund Project: The project was supported by the National Natural Science Funds for Distinguished Young Scholar (50925518), National Science Foundation of China (50775226), the Key Project of Chinese Ministry of Education (109129), Chongqing Key Scientific and Technological Project(CSTC2009AC3049),Chongqing University Postgraduates Science and Innovation Fund (200911A1A0020318) and innovative Talent Training Project, the Third Stage of "211 Project", Chongqing University (S-09106).

引用本文: 王时龙, 雷松, 蔡振兵, 李小勇, 周杰, 朱旻昊. 多股螺旋弹簧扭动微动磨损机理研究[J]. 摩擦学学报, 2011, 31(4): 388-396.

Citation: WANG Shi-long, LEI Song, CAI Zhen-bing, LI Xiao-yong, ZHOU Jie and ZHU Min-hao. Torsional Fretting Wear of Stranded-Wire Helical Spring[J]. TRIBOLOGY, 2011, 31(4): 388-396.

基于多股螺旋弹簧工作过程中钢丝表面发生的扭动微动磨损,建立了多股簧受冲击载荷时,各股钢丝间法向接触力及角位移值的数学模型;通过数学模型所得到的试验参数,在新型试验装置上真实模拟了多股簧工作过程中钢丝间发生的柱-柱接触扭动微动;研究了多股簧钢丝在扭动微动条件下的运行行为和损伤机理.结果表明:钢丝间法向接触力大小、角位移幅值及循环次数对扭动微动行为影响很大;扭动微动T-θ曲线在平行四边形状、椭圆状和直线状3种基本类型之间转变;损伤在部分滑移区较轻微,其磨损主要表现为磨粒磨损和轻微氧化磨损;对于混合区和滑移区,损伤加剧,磨痕表面有明显的塑性变形,损伤机制主要为磨粒磨损、氧化磨损和剥层.

关键词: 多股螺旋弹簧, 扭动微动, 运行行为, 损伤机理
[1]

Zhang Y H, Liu H H, Wang D C. Spring Handbook [M]. Beijing: Mechanical Industry Press, 2008(in Chinese).

[2]

Costello G A, Philips J W. Static response of stranded wire helical springs [J]. International Journal of Mechanical Sciences, 1979, 21: 171-178.

[3]

Clark H H. Stranded wire helical spring-spring design and application [M]. New York: McGrao-Hill Book Company, 1961.

[4]

Wang S L, Lei S, Zhou J, et al. Mathematical model for determination of strand twist angle and diameter in stranded-wire helical springs [J]. Journal of Mechanical Science and Technology, 2010, 24(6): 1 203-1 210.

[5]

Wang S L, Zhou J, Kang L. Dynamic tension of stranded-wire helical spring during reeling [J]. Chinese Journal of Mechanical Engineering, 2008, 44(6): 36-42(in Chinese).

[6]

Yu D W. The dynamic stress of stranded-wire helical spring and its useful life [J]. Journal of Nanjing University of Science and Technology, 1994, 75(3): 24-29(in Chinese).

[7]

Min J J,Wang S L.Analysis on dynamic calculation of stranded-wire helical spring [J]. Chinese Journal of Mechanical Engineering, 2007, 43(3): 199-203(in Chinese).

[8]

Yin R L. Design theory and its application of mechanical spring [M]. Beijing: Weapon Industry Press, 1993(in Chinese).

[9]

Zhou Z R, Zhu M H. Composite fretting wear [M]. Shanghai: Shanghai Jiaotong University Press, 2004(in Chinese).

[10]

Waterhouse R B, McColl I R, Harris S J. Fretting wear of a high-strength heavily work-hardened eutectoid steel[J]. Wear, 1994, 175: 51-57.

[11]

McColl I R, Waterhouse R B, Harris S J. Lubricated fretting wear of a high-strength eutectoid steel rope wire[J]. Wear, 1995, 185: 203-212.

[12]

Guo Q. The wear resistance mechanism of high polymer materials and the prevention of fretting damage at metallic roping wires. Beijing: Tsinghua University, 1996(in Chinese)[郭强. 高分子材料耐磨机理与金属绳缆微动损伤防护研究. 北京: 清华大学, 1996].

[13]

Zhang D K, Ge S R. Fretting wear behavior of steel wire and the effect of fretting on its fatigue fracture behavior [J]. Tribology, 2004, 24(4): 355-359(in Chinese).

[14]

Zhang D K, Ge S R. Research on the evaluation parameters and theory model of fretting wear between steel wires [J]. Tribology, 2005, 25(1): 50-54(in Chinese).

[15]

Zhang D K, Ge S R. Fatigue performance of steel wires with fretting worn notch [J].Journal of Mechanical Engineering, 2006, 42(1): 173-177(in Chinese).

[16]

Zhu M H, Zhou Z R, Kapsa Ph, et al. An experimental investigation on composite fretting mode[J]. Tribology International, 2001, 34: 33-738.

[17]

Zhu M H, Zhou Z R. Dual-motion fretting wear behaviour of 7075 aluminium alloy[J]. Wear, 2003, 255: 269-275.

[18]

Zhu M H, Zhou Z R. Composite fretting wear of aluminum alloy[J]. Key Engineering Materials, 2007, 353-358: 868-873.

[19]

Zhu M H. Investigations on the running and damage mechanisms of radial and composite fretting. Chengdu: Southwest Jiaotong University, 2001(in Chinese)[朱旻昊. 径向与复合微动的运行和损伤机理研究. 成都: 西南交通大学, 2001].

[20]

Cai Z B, Zhu M H, Zhou Z R. An experimental study torsional fretting behaviors of LZ50 steel[J]. Tribology International, 2010, 43(1-2): 361-369.

[21]

Cai Z B, Zhu M H, Zheng J F, et al. Torsional fretting behaviors of LZ50 steel in air and nitrogen[J]. Tribology International, 2009, 42(11-12): 1 676-1 683.

[22]

Cai Z B, Zhu M H, Shen H M, et al. Torsional fretting wear behaviour of 7075 aluminium alloy in various relative humidity environments[J]. Wear, 2009, 267(1-4): 330-339.

[23]

Yu J, Cai Z B, Zhu M H, et al. Study on torsional fretting behavior of UHMWPE[J]. Applied Surface Science, 2008, 255(2): 616-618.

[24]

Cai Z B, Zhu M H, Yu J, et al. Experimental investigation and simulation of torsional fretting mode [J]. Tribology, 2008, 28(1): 18-22(in Chinese).

[25]

Cai Z B, Gao S S, He L P, et al. Torsional fretting characteristics of polymethylmethacrylate [J]. Journal of Sichuan University (Engineering Science Edition) 2009, 41(1): 96-101(in Chinese).

[26]

Cai Z B,Zhu M H,Zhang Q,et al.Oxidation behaviors of steel-to-steel contact under torsional fretting wear [J]. Journal of Xi'an Jiaotong University, 2009, 43(9): 86-90(in Chinese).

[1]

张俊, 彭金方, 徐志彪, 金潇, 朱旻昊. 7075铝合金扭转微动疲劳行为研究[J]. 摩擦学学报, 2017, 37(6):-396. doi: 10.16078/j.tribology.2017.06.018

[2]

. 扭动微动的模拟及其试验研究[J]. 摩擦学学报, 2008, 28(1):-396.

[3]

马妙, 陆永浩. Inconel625镍基合金微动磨损性能研究[J]. 摩擦学学报, 2012, 32(5):-396.

[4]

朱永奎, 蔡振兵, 张广安, 彭金方, 沈明学, 沈火明, 朱旻昊. 纯钛与Ti6Al7Nb合金氮离子注入层在小牛血清溶液中的扭动微动磨损试验研究[J]. 摩擦学学报, 2013, 33(2):-396.

[5]

谢兴源, 沈明学, 刘大伟, 蔡振兵, 朱旻昊. 7075铝合金扭转复合微动磨损研究[J]. 摩擦学学报, 2012, 32(1):-396.

[6]

蔡振兵, 杨莎, 林修洲, 何莉萍, 朱旻昊. 扭动微动条件下含水气氛对氧化行为的影响[J]. 摩擦学学报, 2010, 30(6):-396.

[7]

. 车轴修复用热喷涂层厚度对微动损伤行为的影响[J]. 摩擦学学报, 2002, 22(6):-396.

[8]

陈平, 马勇, 万建成, 江明, 汤广瑞, 周亚傲. 考虑股线接触与摩擦行为的710 mm2碳纤维复合芯导线(ACCC)股线损伤分析[J]. 摩擦学学报, 2017, 37(5):-396. doi: 10.16078/j.tribology.2017.05.001

[9]

. 无损伤肠道机器人运行速度的研究[J]. 摩擦学学报, 1999, 19(4):-396.

[10]

周桂源, 何成刚, 刘吉华, 刘启跃. 冲角工况下列车车轮损伤机理研究[J]. 摩擦学学报, 2015, 35(6):-396. doi: 10.16078/j.tribology.2015.06.017

[11]

. 油溶性纳米Cu在微动磨损条件下的自修复行为与机理研究[J]. 摩擦学学报, 2005, 25(6):-396.

[12]

张纱, 王世博, 葛世荣. 铸型尼龙端面扭动与滑动摩擦学行为研究[J]. 摩擦学学报, 2011, 31(4):-396.

[13]

魏超, 彭金方, 刘曦洋, 刘建华, 蔡振兵, 朱旻昊. CuMg0.4合金弯曲微动疲劳损伤特性研究[J]. 摩擦学学报, 2018, 38(6):-396. doi: 10.16078/j.tribology.2018041

[14]

向红先, 任平弟, 张晓宇, 刘建涛, 李放. 交变载荷条件下NC30Fe合金微动损伤特性研究[J]. 摩擦学学报, 2014, 34(4):-396.

[15]

陈晓晨, 邓松圣, 管金发, 陈明, 陈雁. 磨料水射流冲蚀金属损伤形貌特征及机理研究[J]. 摩擦学学报, 2018, 38(1):-396. doi: 10.16078/j.tribology.2018.01.002

[16]

. 二硫化钼粘结固体润滑涂层的径向和切向微动损伤的比较研究[J]. 摩擦学学报, 2002, 22(1):-396.

[17]

. TiN涂层的径向微动行为[J]. 摩擦学学报, 2000, 20(3):-396.

[18]

丁昊昊, 付志凯, 郭火明, 周琰, 王文健, 刘启跃. 三种钢轨材料与车轮匹配时滚动磨损与损伤行为[J]. 摩擦学学报, 2014, 34(3):-396.

[19]

吴松波, 蔡振兵, 林禹, 李正阳, 朱旻昊. 硬质沙粒对TC4钛合金冲击磨损的损伤行为的研究[J]. 摩擦学学报, 2018, 38(4):-396. doi: 10.16078/j.tribology.2018.04.002

[20]

. 高载下单晶铜和单晶硅的径向纳动与损伤行为研究[J]. 摩擦学学报, 2006, 26(1):-396.

  • 计量
    • PDF下载量 (933)
    • 文章访问量 (5470)
    • 引证文献数? (0)
    目录

    Figures And Tables

    多股螺旋弹簧扭动微动磨损机理研究

    王时龙, 雷松, 蔡振兵, 李小勇, 周杰, 朱旻昊